论文部分内容阅读
鉴于传统的迭代最近点算法存在着易陷入局部最优的缺陷和实时性不好的问题,提出了一种将BP神经网络引入迭代最近点算法中进行地形匹配的新方法。针对传统BP算法存在的局部极小和收敛速度慢等缺点,采用自适应学习方法、引入动量因子、可变化的学习率因子和可调激活函数等措施进行了BP算法的改进。仿真结果表明,改进后的算法可以在一定程度上克服由于局部收敛带来的匹配失效问题,能够获得很好的匹配效果,同时也解决了在实时性上存在的突出问题。