论文部分内容阅读
Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between the change of Ga content and melting time was determined. The results demonstrated that saturated vapor pressure of Ga was higher than that of Fe under the same conditions. The difference value of critical evaporation temperature of Ga with and without Ar was nearly 800 K. The critical evaporation temperature of Fe was higher than that of Ga under vacuum, indicating that Ga was more volatile than Fe. At 1800 K, the evaporation rate of Ga was 84 times higher than that of Fe in the melt of Fe81Ga19 alloy. Under this condition, the change of Ga content and smelting time kept a linear relationship. The higher the temperature was, the faster the Ga content decreased, which was consistent with theoretical calculations.
Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between the change of Ga content and melting time was determined. pressure of Ga was higher than that of Fe under the same conditions. The difference value of critical evaporation temperature of Ga with and without Ar was nearly 800 K. The critical evaporation temperature of Fe was higher than that of Ga under vacuum, indicating that Ga was more volatile than Fe. At 1800 K, the evaporation rate of Ga was 84 times higher than that of Fe in the melt of Fe81Ga19 alloy. Under this condition, the change of Ga content and smelting time kept a linear relationship. The higher the temperature was, the faster the Ga content decreased, which was consistent with theoretical calculations.