论文部分内容阅读
现有法语命名实体识别(NER)研究中,机器学习模型多使用词的字符形态特征,多语言通用命名实体模型使用字词嵌入代表的语义特征,都没有综合考虑语义、字符形态和语法特征。针对上述不足,设计了一种基于深度神经网络的法语命名实体识别模型CGC-fr。首先从文本中提取单词的词嵌入、字符嵌入和语法特征向量;然后由卷积神经网络(CNN)从单词的字符嵌入序列中提取单词的字符特征;最后通过双向门控循环神经网络(BiGRU)和条件随机场(CRF)分类器根据词嵌入、字符特征和语法特征向量识别出法语文本中的命名实体。实验中,