论文部分内容阅读
针对传统自适应中值滤波算法的不足,提出了一种改进的自适应中值滤波算法,该算法引入了角度和相关性,第一,根据角度α的大小,判断当前像素点是否为可疑噪声点,再由其像素间的相关性判断此可疑噪声点是否为噪声点。第二,把排序得到的中值与窗口中所有像素点的均值加权得到新的灰度中值,再将噪声点用新的灰度中值替代,从而达到滤除噪声的效果。实验结果表明,该算法滤波,既能有效地平滑噪声,又能保存细节,效果远优于传统自适应中值滤波算法。