Transfer Learning via Multi-View Principal Component Analysis

来源 :Journal of Computer Science & Technology | 被引量 : 0次 | 上传用户:fq8628
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Transfer learning aims at leveraging the knowledge in labeled source domains to predict the unlabeled data in a target domain,where the distributions are different in domains.Among various methods for transfer learning,one kind of algorithms focus on the correspondence between bridge features and all the other specific features from different domains,and later conduct transfer learning via the single-view correspondence.However,the single-view correspondence may prevent these algorithms from further improvement due to the problem of incorrect correlation discovery.To tackle this problem,we propose a new method for transfer learning in a multi-view correspondence perspective,which is called Multi-View Principal Component Analysis(MVPCA) approach.MVPCA discovers the correspondence between bridge features representative across all domains and specific features from different domains respectively,and conducts the transfer learning by dimensionality reduction in a multi-view way,which can better depict the knowledge transfer.Experiments show that MVPCA can significantly reduce the cross domain prediction error of a baseline non-transfer method.With multi-view correspondence information incorporated to the single-view transfer learning method,MVPCA can further improve the performance of one state-of-the-art single-view method. Transfer learning aims at leveraging the knowledge in labeled source domains to predict the unlabeled data in a target domain, where the distributions are different in domains. Among various methods for transfer learning, one kind of algorithms focus on the correspondence between bridge features and all the other specific features from different domains, and later conduct transfer learning via the single-view correspondence. However these algorithms from further improvement due to the problem of incorrect correlation discovery. tackle this problem, we propose a new method for transfer learning in a multi-view correspondence perspective, which is called Multi-View Principal Component Analysis (MVPCA) approach. MVPCA discovers the correspondence between bridge features representative across all domains and specific features from different domains respectively, and conducts the transfer learning by dimensionality reduction in a multi-view way, which can b etter depict the knowledge transfer. Experiments show that MVPCA can further reduce the cross domain prediction error of a baseline non-transfer method. Multi-view correspondence information to the single-view transfer learning method, MVPCA can further improve the performance of one state-of-the-art single-view method.
其他文献
该文选用30只正常兔60只眼,用超脉冲CO激光外路法巩膜瓣下巩膜虹膜联合切除术,并与常规小梁切除术对比研究.将实验兔按眼别分成两组,一组行激光手术,另一组行小梁切除术作对
该研究以体外培养人横纹肌肉瘤细胞为研究对象,初步观察和探讨MyoD、MRF4转染促 横纹骨肉瘤分化作用及维甲酸诱导分化对MRF表达的影响.实验分为两部分:1.采用磷酸钙-共沉淀法
目的:三维(3dimensional,3D)球形培养和ROCK抑制剂对提高细胞活性和增殖有促进作用,本研究的目的是探索细胞球形培养和新型ROCK抑制剂Y-39983形成一种高活性生物打印,并探究高活性
目的:探讨肾病综合征(NS)儿童PBMC中GR和转录因子NF-κB、AP-1 DNA结合活性的变化在MCNS中的作用,以及糖皮质激素对它们的影响.方法:用EMSA和同位素放射性自显影法等分析了1:6例初
该课题应用前瞻性自身对照研究,从化疗药影响人体胃癌细胞凋亡及增殖的角度,在分子生物学水平上对胃癌新辅助化疗的机理进行探讨.该研究选取1999年4月至2000年2月间该科收治
越来越多的临床研究发现,减重手术是治疗肥胖长期有效的方法。其中腹腔镜袖状胃切除术(LSG)因操作简便、安全性高且疗效明显等优势,近年来得到了迅速普及并成为减重最常用的手
精神分裂症为临床常见精神类疾病,目前临床中尚未明确其病因。近年来有研究指出精神分裂症可能与患者全身免疫系统变化及肠道菌群参与的免疫反应存在相关性,由于肠道微生物菌群
下咽癌是头颈部恶性肿瘤中常见的一种,此类疾病患者早期症状不明显,临床就诊时常累及舌根、喉腔、颈段食管等邻近部位,并多伴有颈部淋巴结的转移,临床分期较晚。晚期肿瘤手术后可
该研究经过基础实验到临床试验,建立一种对食管癌转移淋巴结定位的RⅡ诊断方法,用杭素I标记抗人食管癌单克隆抗体G9,标记物I-G9在食管癌术前患者中,经纤维食管镜于食管原发业
近年来,大榭出入境检验检疫局紧紧围绕服务发展主线,抓住职能转变、风险管理、智能监管三个关键,推动宁波国际强港建设,依法履职,开拓创新,主动作为,促进地方经济又好又快发