基于Wi-Fi信号的免训练呼吸检测

来源 :计算机科学 | 被引量 : 0次 | 上传用户:bobo20092009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着无线通信技术的飞速发展,Wi-Fi已被广泛应用于公共和私人领域。基于无线技术的非入侵式呼吸检测技术在智能家居领域有着广阔的应用前景。针对现有的解决方案难以解释不同场景下存在的巨大性能差异,文中在自由空间中引入菲涅耳区刃形绕射模型,设计了一种基于Wi-Fi信号的免训练呼吸检测方案。首先,通过菲涅耳区刃形绕射模型,在室内环境中验证了Wi-Fi信号的衍射传播特性;其次,研究了人体呼吸对接收端Wi-Fi信号的影响,并量化了衍射增益与人体呼吸时微小胸腔位移之间的关系,不仅解释了可以使用Wi-Fi设备检测到人体呼
其他文献
相较于有人驾驶飞行器,无人机具有诸多优势,在军事、民用及科研等领域都有着广泛应用。但是,无人机缺少飞行员的实时决策能力,因此具有较高的事故率。故障预测是无人机健康管理技术的核心,在构建故障预警模型之前,很重要的一步是对采样数据进行模式识别,进而对建模的训练数据添加精准标签,这也是完善飞行画像的一部分。文中基于沈阳某无人机生产公司大数据平台累积的无人机飞行数据,提出利用半监督聚类技术自动识别飞行过程
容积效应和伪影现象是MR影像处理中的重要影响因素,单模态处理方法易受两者影响。提出一种改进的基于多模态局部转向核的方法来检测大脑中的多发性硬化。该方法利用多模态脑MR影像和大脑近似轴对称的先验知识来进行大脑情况的变化检测。局部转向核能够度量像素与其周围环境的相似程度,因此该方法将局部转向核作为特征,用余弦相似性来衡量差异性。实验结果表明,多模态的引入减少了容积效应和伪影现象,改善了检测效果。
传统的网络使用基于最短路径的单一路径路由,无法有效地利用网络的全部带宽。软件定义网络(Software Defined Networking,SDN)采用中心化的控制平面能方便地实现对路由的精确控
针对MOEA/D单纯使用邻域更新作为选择策略而造成的个体解的重复更新、缺乏全局适配性等问题,提出了一种兼及全局替换和局部更新策略的新算法,即基于自适应选择策略的改进型MO
NSGA2是一种简单、高效且被广泛使用的多目标进化算法(Multi-objective Evolutionary Algorithm,MoEA),但在求解实际工程领域中的高维、复杂非线性多目标优化问题(Multi-objecti
文中讨论了基于模糊软集的三Ⅰ推理方法的还原性和连续性。针对左连续t模诱导的模糊蕴涵算子,给出了FSMP三Ⅰ推理方法满足还原性的条件,并证明了对于Lukasiewicz模糊蕴涵算子
低秩矩阵修补是机器学习和数据分析中的核心问题,被广泛应用于协同过滤、降维处理、多任务学习和模式识别等领域。针对ADMiRA算法存在收敛速度慢、易陷入局部最优等缺陷,通过