论文部分内容阅读
目的提出一种基于模糊聚类和改进C-V模型的新型图像分割方法,以精准和快速地提取冠状动脉CT血管造影图像中的冠脉轮廓。方法首先对原始冠脉CT造影图像进行预处理;然后利用模糊C均值聚类算法进行预分割,将获得的隶属矩阵和聚类信息耦合进改进的C-V模型中,完成对冠脉图像的分割;最后定性和定量分析本文模型与其他两种传统模型对冠脉CT造影图像的分割结果。结果定性分析结果显示,本文模型以较少的迭代次数完成了对冠脉轮廓的提取,对细小复杂的组织具有较强的分割能力,目标边缘光滑。定量分析结果显示,本文模型迭代200次耗