论文部分内容阅读
目前用于图像识别的大多数卷积神经网络(CNN)都使用相同的原理构建,即:卷积层、池化层、全连接层。文中使用密集卷积神经网络重新评估了用于图像识别的所有组件,并对池化层不存在的必要性提出了质疑。经过实验,分析发现池化层可以由步幅增加的卷积层代替,却不会降低图像识别的准确率。研究中则在DenseNets上训练提出的由卷积层替代池化层的方法,组成新的卷积神经网络体系结构,并在多个图像分类的数据集(CIFAR-10,SVHN)上产生了先进的性能。本文提出了基于密集卷积神经网络(DenseNets)的全卷积池