论文部分内容阅读
针对聚类中不规格形状数据点分布的处理难题,提出了一种基于密度梯度的聚类算法(CDG)。算法通过分析数据样本及其周边的点密度变化情况,选择沿密度变化大的方向寻找不动点,从而获取原始聚类中心,再利用类间边界点的分布情况对小类进行合并。实验结果表明,新算法较基于密度的带噪声数据应用的空间聚类方法(DBSCAN)具有更好的聚类性能。