论文部分内容阅读
浙江建院建筑规划设计院宁波分院 315300
摘要:地下室的结构设计在整个建筑结构设计中是比较重要的一个环节,因为地下室的位置较为特殊,如果设计不当,对整个工程性能会产生较大影响,本文针对结构设计中的几个问题作简述。
关键词:高层建筑;地下室;结构设计
一、前言
地下室的结构设计是一个综合性很强问题,涉及到的内容繁多而复杂,有些问题至今尚未得到很好的解决,如:地基与基础的相互作用问题。上部结构刚度对地基基础的影响等等。现代高层建筑由于地下工程庞大,建设工程在地下的投资已经接近甚至超过了地上,因此无论是从技术还是从经济的角度讲都需要我们更深入地研究地下室结构设计的技术问题,提高地下室结构设计的水平,真正做到技术与经济同步,安全与适用协调。
二、地下室结构设计的特点要求
地下室结构设计的主要内容包含几个方向:
1.是主体结构设计,包括顶板、外侧墙、底板等其它构件的结构设计;
2.是孔口防护设计,包括出入口的防护和消波系统(防护设备)其中出人口的防护包含防护密闭门的选用、门框墙、临空墙的计算,出人口通道(包括风井)的计算等几个方面,而消波系统则包含防爆破活门的选用和扩散室(箱)的设计。
3.是地下室是否与上部结构一起计算对于计算结果影响较大,其底板经常同时作为结构的基础,需要考虑地基的反作用力,顶板作为工程的重要部位,需要组合核爆炸力的等效静荷载,外墙则需考虑侧向的土、水的水平作用组合。
总之,地下室的结构设计可按整体设计和构件的单独设计分别进行。结构设计的可靠性可以降低,一般建筑结构(延性破坏)失效概率为6.8%,而地下室结构(延性破坏)失效概率为6.1%,需考虑结构的动力效应,结构构件可考虑进人塑性工作状态,材料设计强度可以提高。在快速加载的情况下,材料力学性能发生比较明显的变化。主要表现为强度提高,但变形性能包括塑性性能等基本不变,这对结构工作起到有利作用。
三、地下室结构设计中存在的问题
1.地下室结构平面设计
地下室工程涉及的专业极为复杂,在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定的长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝土外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。若地下室过长,依靠设置后浇带的方法难以解决,设计人员应合理地调整平面,将地下室分割成几个小地下室,中间用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。在结构设计时应合理地设置采光通风井,若高层建筑采光通风井位置设计不当,例如在侧壁外作附加通长采光井,而采光井外壁又不能与地下室顶板整体连接,会造成地下室保证结构稳定功能的丧失,不能有效地将上部的地震及风力作用传至侧壁及地面,不能满足高层建筑的埋深要求。
2.地下室外墙结构设计
地下室的外墙是结构设计的重点,应按水、土压力验算外墙抗裂。在设计时应注意以下要求:
(1)是荷载,地下室外墙所承受的荷载分为水平荷载和竖向荷载。竖向荷载包括上部及地下室结构的楼盖传重和自重,水平荷载包括室外地面活载、侧向土压力、地下水侧向压力和人防等效静荷载。在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋。
(2)是地下室外墙截面设计时,土压力引起的效应为永久荷载效应。地下室外墙承受的土压力宜取静止土压力,静止土压力宜由试验确定。当不具备试验条件时,砂土可取0.34~0.45,黏性土可取0.5~0.7。水位稳定的水压力按永久荷载考虑,分项系数可取 1.2;水位急剧变化的水压力按可变荷载考虑,分项系数宜取 1.3。有人防要求的地下室外墙的永久荷载分项系数,当其效应对结构不利时取 1.2,有利时取 1.0;抗爆等效静荷载分项系数取1.0。
(3)是地下室外墙的配筋计算。实际设计时,配筋的计算,对于带扶壁柱的外墙,不是根据扶壁柱的尺寸大小进行计算,而是均按双向板计算配筋;扶壁柱则按地下室结构的整体电算分析结果进行配筋,不按外墙双向板传递荷载验算扶壁柱配筋。
四、建筑工程地下室结构优化设计
1.抗震设计
一般来讲地下室抗震设计中较为常见的问题为:多层建筑中半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011- 2001第7.1.2条。地下室顶板为上部结构嵌固端,地下室一层抗震等级定为三级,而上部结构为二级,按GB50011- 2001第6.1.3条地下室也应为二级。
若地下室设计不当,对其整体的抗震性能会产生较大的影响。根据施工图审查要点,般来讲,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计算其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱应协调统一。对地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,应采取一定的措施进行处理,否则不应作为上部结构的部位。相关规范明确规定,作为上部结构部位的地下室楼层的顶楼,盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构的部位。结构计算应向下
计算至满足要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上计算,并应包括地下层。
2.地下室抗浮、抗渗设计
一般来讲,此类设计常见问题为:地下水位未按勘察报告确定,或勘察报告未提供计算浮力的地下水位及其变幅,违反了 GB50007- 2002 第 3.0.2 条;斜坡道未进行抗浮验算,斜坡道与主体分缝处未作处理;抗浮验算不满足要求,不符合GB50009- 2001 第 3.2.5 条等。
地下水位及其变幅是地下室抗浮设计的重要依据。实际在地下室抗浮设计时仅考虑正常使用的极限状态,而对施工过程和洪水期重视不足,因而会造成地下室施工过程中因抗浮不够而出现局部破坏。另外,在同一整体大面积地下室的上部常建有多栋高层和低层建筑,由于地下室的面积较大、形状又不规则,且地下室上方的局部没有建筑,此类抗浮问题相对难以处理,须作细致分析后再进行处理。地下室结构设计除应满足受力要求外,抗渗也是其中一个重点。由于钢筋混凝土结构通常带裂缝工作,要达到抗渗目的,一般可采取以下措施:
(1)补偿收缩混凝土。在混凝土中掺微膨胀剂,以混凝土的膨胀值抵消混凝土的最终收缩值。当其差值大于或等于混凝土的极限拉伸时,即可控制裂缝;
(2)膨胀带。混凝土中膨胀剂的膨胀变形不会完全补偿混凝土的早期收缩变形,而设置补偿收缩混凝土带可以实现混凝士连续浇注无缝施工;
(3)后浇带。后浇带作为混凝土早期短时期释放约束力的一种技术措施,较长久性变形缝已有很大的改进并广泛应用;
五、结束语
高层建筑地下室结构设计显然是一个复杂的过程,但是,只要把握设计要点,抓住设计重点,以合理的设计为前提,进行全面考虑,使建筑地下室结构设计工作发挥其最大的经济作用和社会效益、战略效益。
参考文献:
[1]人民防空地下室设计规范(GB50038-2005)[S].
[2]JGJ3-2002高层建筑混凝土结构技术规程[S].北京:中国建筑工业出社,2002.
摘要:地下室的结构设计在整个建筑结构设计中是比较重要的一个环节,因为地下室的位置较为特殊,如果设计不当,对整个工程性能会产生较大影响,本文针对结构设计中的几个问题作简述。
关键词:高层建筑;地下室;结构设计
一、前言
地下室的结构设计是一个综合性很强问题,涉及到的内容繁多而复杂,有些问题至今尚未得到很好的解决,如:地基与基础的相互作用问题。上部结构刚度对地基基础的影响等等。现代高层建筑由于地下工程庞大,建设工程在地下的投资已经接近甚至超过了地上,因此无论是从技术还是从经济的角度讲都需要我们更深入地研究地下室结构设计的技术问题,提高地下室结构设计的水平,真正做到技术与经济同步,安全与适用协调。
二、地下室结构设计的特点要求
地下室结构设计的主要内容包含几个方向:
1.是主体结构设计,包括顶板、外侧墙、底板等其它构件的结构设计;
2.是孔口防护设计,包括出入口的防护和消波系统(防护设备)其中出人口的防护包含防护密闭门的选用、门框墙、临空墙的计算,出人口通道(包括风井)的计算等几个方面,而消波系统则包含防爆破活门的选用和扩散室(箱)的设计。
3.是地下室是否与上部结构一起计算对于计算结果影响较大,其底板经常同时作为结构的基础,需要考虑地基的反作用力,顶板作为工程的重要部位,需要组合核爆炸力的等效静荷载,外墙则需考虑侧向的土、水的水平作用组合。
总之,地下室的结构设计可按整体设计和构件的单独设计分别进行。结构设计的可靠性可以降低,一般建筑结构(延性破坏)失效概率为6.8%,而地下室结构(延性破坏)失效概率为6.1%,需考虑结构的动力效应,结构构件可考虑进人塑性工作状态,材料设计强度可以提高。在快速加载的情况下,材料力学性能发生比较明显的变化。主要表现为强度提高,但变形性能包括塑性性能等基本不变,这对结构工作起到有利作用。
三、地下室结构设计中存在的问题
1.地下室结构平面设计
地下室工程涉及的专业极为复杂,在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定的长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝土外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。若地下室过长,依靠设置后浇带的方法难以解决,设计人员应合理地调整平面,将地下室分割成几个小地下室,中间用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。在结构设计时应合理地设置采光通风井,若高层建筑采光通风井位置设计不当,例如在侧壁外作附加通长采光井,而采光井外壁又不能与地下室顶板整体连接,会造成地下室保证结构稳定功能的丧失,不能有效地将上部的地震及风力作用传至侧壁及地面,不能满足高层建筑的埋深要求。
2.地下室外墙结构设计
地下室的外墙是结构设计的重点,应按水、土压力验算外墙抗裂。在设计时应注意以下要求:
(1)是荷载,地下室外墙所承受的荷载分为水平荷载和竖向荷载。竖向荷载包括上部及地下室结构的楼盖传重和自重,水平荷载包括室外地面活载、侧向土压力、地下水侧向压力和人防等效静荷载。在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋。
(2)是地下室外墙截面设计时,土压力引起的效应为永久荷载效应。地下室外墙承受的土压力宜取静止土压力,静止土压力宜由试验确定。当不具备试验条件时,砂土可取0.34~0.45,黏性土可取0.5~0.7。水位稳定的水压力按永久荷载考虑,分项系数可取 1.2;水位急剧变化的水压力按可变荷载考虑,分项系数宜取 1.3。有人防要求的地下室外墙的永久荷载分项系数,当其效应对结构不利时取 1.2,有利时取 1.0;抗爆等效静荷载分项系数取1.0。
(3)是地下室外墙的配筋计算。实际设计时,配筋的计算,对于带扶壁柱的外墙,不是根据扶壁柱的尺寸大小进行计算,而是均按双向板计算配筋;扶壁柱则按地下室结构的整体电算分析结果进行配筋,不按外墙双向板传递荷载验算扶壁柱配筋。
四、建筑工程地下室结构优化设计
1.抗震设计
一般来讲地下室抗震设计中较为常见的问题为:多层建筑中半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011- 2001第7.1.2条。地下室顶板为上部结构嵌固端,地下室一层抗震等级定为三级,而上部结构为二级,按GB50011- 2001第6.1.3条地下室也应为二级。
若地下室设计不当,对其整体的抗震性能会产生较大的影响。根据施工图审查要点,般来讲,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计算其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱应协调统一。对地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,应采取一定的措施进行处理,否则不应作为上部结构的部位。相关规范明确规定,作为上部结构部位的地下室楼层的顶楼,盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构的部位。结构计算应向下
计算至满足要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上计算,并应包括地下层。
2.地下室抗浮、抗渗设计
一般来讲,此类设计常见问题为:地下水位未按勘察报告确定,或勘察报告未提供计算浮力的地下水位及其变幅,违反了 GB50007- 2002 第 3.0.2 条;斜坡道未进行抗浮验算,斜坡道与主体分缝处未作处理;抗浮验算不满足要求,不符合GB50009- 2001 第 3.2.5 条等。
地下水位及其变幅是地下室抗浮设计的重要依据。实际在地下室抗浮设计时仅考虑正常使用的极限状态,而对施工过程和洪水期重视不足,因而会造成地下室施工过程中因抗浮不够而出现局部破坏。另外,在同一整体大面积地下室的上部常建有多栋高层和低层建筑,由于地下室的面积较大、形状又不规则,且地下室上方的局部没有建筑,此类抗浮问题相对难以处理,须作细致分析后再进行处理。地下室结构设计除应满足受力要求外,抗渗也是其中一个重点。由于钢筋混凝土结构通常带裂缝工作,要达到抗渗目的,一般可采取以下措施:
(1)补偿收缩混凝土。在混凝土中掺微膨胀剂,以混凝土的膨胀值抵消混凝土的最终收缩值。当其差值大于或等于混凝土的极限拉伸时,即可控制裂缝;
(2)膨胀带。混凝土中膨胀剂的膨胀变形不会完全补偿混凝土的早期收缩变形,而设置补偿收缩混凝土带可以实现混凝士连续浇注无缝施工;
(3)后浇带。后浇带作为混凝土早期短时期释放约束力的一种技术措施,较长久性变形缝已有很大的改进并广泛应用;
五、结束语
高层建筑地下室结构设计显然是一个复杂的过程,但是,只要把握设计要点,抓住设计重点,以合理的设计为前提,进行全面考虑,使建筑地下室结构设计工作发挥其最大的经济作用和社会效益、战略效益。
参考文献:
[1]人民防空地下室设计规范(GB50038-2005)[S].
[2]JGJ3-2002高层建筑混凝土结构技术规程[S].北京:中国建筑工业出社,2002.