基于云粒子群算法的航空发动机性能衰退模型研究

来源 :燃气涡轮试验与研究 | 被引量 : 0次 | 上传用户:chshlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
压气机和涡轮是发动机的关键部件,其性能下降对发动机性能有重要影响。本文研究了压气机和涡轮的性能衰退,将部件性能衰退等价转化为部件失效因子,修正部件特性,建立了某型涡扇发动机的非线性性能衰退计算模型;提出了云粒子群优化算法,以改善迭代收敛速度慢、计算时间长的问题。基于非线性发动机性能衰退模型,进行了部件性能衰退对发动机性能影响的定量计算,所得结论为发动机状态监控提供了依据。 Compressors and turbines are a key component of the engine and their performance degradation has a significant impact on engine performance. In this paper, the performance degradation of the compressor and the turbine is studied, the component performance degradation is equivalently transformed into the component failure factor and the component characteristics are modified, and the nonlinear performance degradation calculation model of a certain type of turbofan engine is established. The cloud particle swarm optimization algorithm is proposed, To improve the convergence of the iterative slow, long calculation time. Based on the non-linear engine performance degradation model, the quantitative calculation of the influence of the component performance degradation on the engine performance was carried out. The conclusion obtained provided the basis for the engine condition monitoring.
其他文献