论文部分内容阅读
[摘 要]HXD1D型电力机车属于大功率六轴干线客运电力机车,其最大速度可达160km/h,以大功率IGBT(3300V/1200A)水冷变流器及大功率异步牵引电机、卧式主变压器、全悬挂转向架等项技术,机车单轴功率为1200kW,最高运用速度为160km/h,可用于我国铁路环境中。但随着我国科学技术与经济水平的飞速提升,中国铁路亦随之提速,山区运行中的机车功率需求更大,诸多隧道都不适合运用内燃机车,但170km/h直流快速电力机车最大功率仅是4800kw,这导致大功率和谐系列电力机车速度很慢。本文探讨了HXD1D型交流传动电力机车辅助系统不间断供电技术,并提出了实用性应用措施,为HXD1D型交流传动电力机车辅助系统安全运行提供参考依据。
[关键词]HXD1D型交流传动电力机车;辅助系统;不间断供电技术
中图分类号:TM77 文献标识码:A 文章编号:1009-914X(2016)21-0035-01
HXD1D型交流传动电力机车其是以自主化技术为基础研制的,此类电动机车总体参数良好,且功率极大,牵引能力更强,实际运行中的加速性能十分优越,运行安全可靠、节能环保,市场发展潜力大,可适用于各类铁路客运牵引地区。此种机车是以主辅一体化牵引变流器而实现运行的,辅助电气系统则包括辅助电路与设施、列车供电系统,而其辅助电路则以辅助逆变器实现供电,可有效辅助逆变器、变流器共同间的直流环节,但HXD1D型交流传动电力机车辅助系统不间断供电技术应用中存在诸多不足之处。因此,探讨HXD1D型交流传动电力机车辅助系统不间断供电技术应用有着极大现实意义。
一、 我国干线铁路电气化建设现状分析
我国干线铁路电气化建设中的接触网供电系统均使用的是三相供电,而为了保证电力系统三相负载处于平衡状态,供电系统则使用分段换相供电。为了有效防止相间短路,通常均是于各个相间设置无电区域,此为分相区。现阶段的铁路接触网均是隔20-30km设置1个分相区,而机车通过分相区时,司机均需将牵引/制动手柄回零,从而及时断开主断路器,惯性通过分相区时可及时闭合主断路器,保证其过分相时的主断路器断、合均被严格控制,亦可以系统自动完成。
近年来,我国轨道交通运输业发展飞速,各项技术装备亦逐渐成熟,机车运营速度也不断提升。干线铁路机车于30min内可通过1-3个分相区,而于此情况下,若机车运用传统机车主辅电路结构,这时辅助机组启停次数及其蓄电池组充放电频率可被提高,设备开关器件的通断次数则持续增多,这则缩短了设备寿命。分相区中的主压缩机停止不工作,导致机车与后端列车供风中断,如果后部车辆用风设备被大量使用,导致总风压力降低,这时车辆应用受到较大影响。如果机车过分相时的辅助系统继续供电,其可延长部件与车辆的使用时间。
二、 HXD1D型交流传动电力机车辅助系统供电工况
1、 机车正常牵引下工况
处于该工况下的变压器6组牵引绕组分别于2个牵引变流器中的6个整流模块,并提供相应的单相交流电,之后则通过中间直流环节于6个主逆变器、2个辅助逆变器,再为其提供电源,6个主逆变器可为6台牵引电机提供独立供电,其间2个辅助逆变器可为辅助负载提供相应的定频定压及变频变压电源。
2、 机车再生制动工况
牵引变流器中的6个主逆变器工作于整流工况下,6个整流模块则可以当时辅助负载具体需求容量工作于整流状态及逆变状态下,以保证牵引变流器间的电压稳定于准确值中。如果6台牵引电机再生制动产生的能量满足两路辅助系统的电能,6个整流模块则处于逆变情况,从而导致多出的电能及时反馈;亦或者是再生制动力小时,6台牵引电机再生制动生成的能量可充分满足其负载需求,6个整流模块会于牵引绕组中获得所需的能力,工作于整流状态下,可为直流环节提供相应的电能,从而保证中间直流环节电压稳定,并满足辅助负载中需要的电能;若牵引电机再生制动所产生的电能可满足变频变压支路辅助负载需要的供电需求,并保证其极具富余能力,此种电机产生的电能根本适应不了定额定压支路辅助负载供电需求,而这时的整流模块均工作于逆变工况中,从而把多余电能及时反馈,并将直流环节中的电源有效稳定,保证辅助系统负载可获得相应的电能。
3、 机车过分相工况
机车进入分相区域时,其牵引系统由网络系统获得相应的信号,牵引力均是根据规定大小实现卸载,最终牵引系统会有效转至再生制动工况下,这时的主断路器会自动断开,四象限整流器模块被封锁。系统则以机车进入分相前辅助系统需要的实际容量控制,从而保证机车再生制动,这时的再生制动所产生的电能可为负载电源。为了保证机车于不良条件下有效通过分相区,而HXD1D型交流传动电力机车辅助系统可充分满足不间断供电需求。
三、 辅助系统不间断供电技术
1、 保证供电系统运行
列车供电系统主要是对机车后部客运车厢提供相应的电能,列车供电柜为供电系统的重要内容,其电路多分为主电路、辅助电路、控制电路、电子电路等,列车柜体中往往具备2路独立且相同的互相控制整流与辅助电路,以LC滤波电路与供柜输入电源均来自2个860V的列供绕组,其可以内部相控整流,滤波之后则提供600V直流供电。列车供电系统具备相应的交流短路保护更能,其交流过压吸收保护功能与直流过载保护功能等十分良好。
2、延长设备应用時间
此项技术可有效降低机车辅助系统设备启停次数,且辅助负载中的设施设备电流通断频率会随之降低,以延长设施设备应用时间。辅助系统不间断供电于机车过分相控制电源柜可连续控制电路中的负载供电,并为蓄电池快速充电,无需以蓄电池维持并控制电路负载运转,从而有效延长蓄电池应用时间。
3、增强机车稳定性
此项技术可有效确保主压缩机于过分相之前实现不间断工作,从而保证机车具备相应的风量,以便保证后部车辆用风正常。机车于分相区时,传统机车控制系统与监控系统等设施设备均是以蓄电池实现供电,如果蓄电池发生故障,则严重影响机车安全运行,会导致列车停止运行。HXD1D型交流传动电力机车辅助系统于分相区时,可有效控制电源模块供电,控制电源模块具备良好的冗余性,尽管控制电源模块发生故障时,则可以蓄电池实现供电,从而有效增强机车稳定性。
4、降低操作强度
此项技术可有效确保机车于分相区时,快速恢复分相区之前的状态,以便确保空调、暖风机、微波炉、烧水壶等设施设备连续使用,从而有效降低操作强度,合理改善司乘人员的工作环境。
结束语
HXD1D型交流传动电力机车现已大批量的投入运营,且其整体使用情况十分良好,辅助系统不间断供电技术优越性被用户逐渐发掘,并得到社会各界的认可。此项技术提高了机车辅助系统设施设备使用效率,并延长了其使用时间,机车与设备可靠性被有效提高,且能够有效改善工作人员的操作。本文对我国干线铁路电气化建设现状进行了分析,探讨了HXD1D型交流传动电力机车辅助系统供电工况,简析了辅助系统不间断供电技术,为HXD1D型交流传动电力机车辅助系统安全运行提供参考依据。
参考文献
[1] 颜罡,李希宁,刘 胜. OZ-Y 型交流传动电力机车主辅电路[J].电力机车与城轨车辆,2010(04).
[2] 康明明,张彦林. HXD1C 型大功率交流传动电力机车主电路[J].电力机车与城轨车辆,2012(05).
[3] 李群锋,樊运新,彭新平. HXD1B 型大功率交流传动电力机车概述[J].电力机车与城轨车辆,2011(01).
[4] 王晓勇,王位,胡亮.HXD1D 型交流传动客运电力机车电传动系统[J].电力机车与城轨车辆,2013(03).
[关键词]HXD1D型交流传动电力机车;辅助系统;不间断供电技术
中图分类号:TM77 文献标识码:A 文章编号:1009-914X(2016)21-0035-01
HXD1D型交流传动电力机车其是以自主化技术为基础研制的,此类电动机车总体参数良好,且功率极大,牵引能力更强,实际运行中的加速性能十分优越,运行安全可靠、节能环保,市场发展潜力大,可适用于各类铁路客运牵引地区。此种机车是以主辅一体化牵引变流器而实现运行的,辅助电气系统则包括辅助电路与设施、列车供电系统,而其辅助电路则以辅助逆变器实现供电,可有效辅助逆变器、变流器共同间的直流环节,但HXD1D型交流传动电力机车辅助系统不间断供电技术应用中存在诸多不足之处。因此,探讨HXD1D型交流传动电力机车辅助系统不间断供电技术应用有着极大现实意义。
一、 我国干线铁路电气化建设现状分析
我国干线铁路电气化建设中的接触网供电系统均使用的是三相供电,而为了保证电力系统三相负载处于平衡状态,供电系统则使用分段换相供电。为了有效防止相间短路,通常均是于各个相间设置无电区域,此为分相区。现阶段的铁路接触网均是隔20-30km设置1个分相区,而机车通过分相区时,司机均需将牵引/制动手柄回零,从而及时断开主断路器,惯性通过分相区时可及时闭合主断路器,保证其过分相时的主断路器断、合均被严格控制,亦可以系统自动完成。
近年来,我国轨道交通运输业发展飞速,各项技术装备亦逐渐成熟,机车运营速度也不断提升。干线铁路机车于30min内可通过1-3个分相区,而于此情况下,若机车运用传统机车主辅电路结构,这时辅助机组启停次数及其蓄电池组充放电频率可被提高,设备开关器件的通断次数则持续增多,这则缩短了设备寿命。分相区中的主压缩机停止不工作,导致机车与后端列车供风中断,如果后部车辆用风设备被大量使用,导致总风压力降低,这时车辆应用受到较大影响。如果机车过分相时的辅助系统继续供电,其可延长部件与车辆的使用时间。
二、 HXD1D型交流传动电力机车辅助系统供电工况
1、 机车正常牵引下工况
处于该工况下的变压器6组牵引绕组分别于2个牵引变流器中的6个整流模块,并提供相应的单相交流电,之后则通过中间直流环节于6个主逆变器、2个辅助逆变器,再为其提供电源,6个主逆变器可为6台牵引电机提供独立供电,其间2个辅助逆变器可为辅助负载提供相应的定频定压及变频变压电源。
2、 机车再生制动工况
牵引变流器中的6个主逆变器工作于整流工况下,6个整流模块则可以当时辅助负载具体需求容量工作于整流状态及逆变状态下,以保证牵引变流器间的电压稳定于准确值中。如果6台牵引电机再生制动产生的能量满足两路辅助系统的电能,6个整流模块则处于逆变情况,从而导致多出的电能及时反馈;亦或者是再生制动力小时,6台牵引电机再生制动生成的能量可充分满足其负载需求,6个整流模块会于牵引绕组中获得所需的能力,工作于整流状态下,可为直流环节提供相应的电能,从而保证中间直流环节电压稳定,并满足辅助负载中需要的电能;若牵引电机再生制动所产生的电能可满足变频变压支路辅助负载需要的供电需求,并保证其极具富余能力,此种电机产生的电能根本适应不了定额定压支路辅助负载供电需求,而这时的整流模块均工作于逆变工况中,从而把多余电能及时反馈,并将直流环节中的电源有效稳定,保证辅助系统负载可获得相应的电能。
3、 机车过分相工况
机车进入分相区域时,其牵引系统由网络系统获得相应的信号,牵引力均是根据规定大小实现卸载,最终牵引系统会有效转至再生制动工况下,这时的主断路器会自动断开,四象限整流器模块被封锁。系统则以机车进入分相前辅助系统需要的实际容量控制,从而保证机车再生制动,这时的再生制动所产生的电能可为负载电源。为了保证机车于不良条件下有效通过分相区,而HXD1D型交流传动电力机车辅助系统可充分满足不间断供电需求。
三、 辅助系统不间断供电技术
1、 保证供电系统运行
列车供电系统主要是对机车后部客运车厢提供相应的电能,列车供电柜为供电系统的重要内容,其电路多分为主电路、辅助电路、控制电路、电子电路等,列车柜体中往往具备2路独立且相同的互相控制整流与辅助电路,以LC滤波电路与供柜输入电源均来自2个860V的列供绕组,其可以内部相控整流,滤波之后则提供600V直流供电。列车供电系统具备相应的交流短路保护更能,其交流过压吸收保护功能与直流过载保护功能等十分良好。
2、延长设备应用時间
此项技术可有效降低机车辅助系统设备启停次数,且辅助负载中的设施设备电流通断频率会随之降低,以延长设施设备应用时间。辅助系统不间断供电于机车过分相控制电源柜可连续控制电路中的负载供电,并为蓄电池快速充电,无需以蓄电池维持并控制电路负载运转,从而有效延长蓄电池应用时间。
3、增强机车稳定性
此项技术可有效确保主压缩机于过分相之前实现不间断工作,从而保证机车具备相应的风量,以便保证后部车辆用风正常。机车于分相区时,传统机车控制系统与监控系统等设施设备均是以蓄电池实现供电,如果蓄电池发生故障,则严重影响机车安全运行,会导致列车停止运行。HXD1D型交流传动电力机车辅助系统于分相区时,可有效控制电源模块供电,控制电源模块具备良好的冗余性,尽管控制电源模块发生故障时,则可以蓄电池实现供电,从而有效增强机车稳定性。
4、降低操作强度
此项技术可有效确保机车于分相区时,快速恢复分相区之前的状态,以便确保空调、暖风机、微波炉、烧水壶等设施设备连续使用,从而有效降低操作强度,合理改善司乘人员的工作环境。
结束语
HXD1D型交流传动电力机车现已大批量的投入运营,且其整体使用情况十分良好,辅助系统不间断供电技术优越性被用户逐渐发掘,并得到社会各界的认可。此项技术提高了机车辅助系统设施设备使用效率,并延长了其使用时间,机车与设备可靠性被有效提高,且能够有效改善工作人员的操作。本文对我国干线铁路电气化建设现状进行了分析,探讨了HXD1D型交流传动电力机车辅助系统供电工况,简析了辅助系统不间断供电技术,为HXD1D型交流传动电力机车辅助系统安全运行提供参考依据。
参考文献
[1] 颜罡,李希宁,刘 胜. OZ-Y 型交流传动电力机车主辅电路[J].电力机车与城轨车辆,2010(04).
[2] 康明明,张彦林. HXD1C 型大功率交流传动电力机车主电路[J].电力机车与城轨车辆,2012(05).
[3] 李群锋,樊运新,彭新平. HXD1B 型大功率交流传动电力机车概述[J].电力机车与城轨车辆,2011(01).
[4] 王晓勇,王位,胡亮.HXD1D 型交流传动客运电力机车电传动系统[J].电力机车与城轨车辆,2013(03).