论文部分内容阅读
提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类的样本。实验结果表明,该文本分类算法具有良好分类的性能。