论文部分内容阅读
According to the catastrophe model for impact buckling of static loading structures, a new catastrophe model for impact loading failure of a static loading rock system was established, and one dimension (1D) catastrophe model was analyzed. The analysis results indicate that the furcation collection where catastrophe may take place is not only decided by mechanical system itself but also relates to exterior loading, which is different from the results obtained under mono-static loading where the bifurcation collection is only determined by mechanics of the system itself and has nothing to do with exterior loading. In addition, the corresponding 1D coupled static-dynamic loading experiment is designed to verify the analysis results of catastrophe model The test is done with Instron 1342 electroservo controlled testing system, in which medium strain rate is caused by monotony rising dynamic load. The parameters are obtained combining theoretical model with experiment. The experimental and theoretical curves of critical dynamic load vs static load are rather coincided, thus the new model is proved to be correct.