论文部分内容阅读
模糊C-均值(FCM)聚类算法是目前最流行的数据集模糊划分方法之一.但是,有关聚类类别数的合理选择和确定,即聚类有效性分析,对FCM算法而言仍是一个开放性问题.为此,本文结合数据集的几何结构信息和FCM算法的模糊划分信息,重新定义了划分矩阵,进而利用划分模糊度提出了一种新的模糊聚类有效性函数.实验结果表明该方法是有效的且具有良好的鲁棒性.