车载牵引变流器关键部件寿命评估综述

来源 :电源学报 | 被引量 : 0次 | 上传用户:jianghui_one
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
牵引变流器被视为轨道交通列车的“心脏”,为列车的运行提供强劲动力。但作为变流器实现电能变换的关键执行部件,绝缘栅双极晶体管IGBT (insulate-gate bipolar transistor)模块与电容性能受多变工况影响较大且较为脆弱,对列车安全运行带来极大挑战。现行的维护方案存在维修成本高、维修不及时的缺点,而以寿命评估为核心的更加经济安全的状态修被认为是未来修程修制的改革方向。为此,针对牵引变流器的关键部件—IGBT模块和电容的寿命评估方法进行调研和总结,根据现有寿命评估研究从数理统计出发
其他文献
在大功率场合,三电平中点箝位NPC (neutral point clamped)型逆变器需运行在较低的开关频率,此时传统调制方式(载波调制和空间矢量调制)不再适用,需采用特定谐波消除脉宽调制SHEPWM(specific harmonic elimination pulse width modulation)等其他调制方式。主要研究应用于三电平NPC的SHEPWM的实现方法,目前三电平SHEPWM的实现多采用多项式曲线拟合法,但当所需拟合的开关角曲线波动过大时,多项式曲线拟合法需进行分段拟合才可达到拟合
高开关速率且栅极电压稳定的驱动是SiC MOSFET高频工作、进而实现功率变换系统小型化和轻量化的关键技术之一。针对如何在高开关速率下稳定驱动SiC MOSFET,并实现可靠的短路保护,根据栅源电压干扰的传导特点,基于辅助器件的跨导增益构建负反馈控制回路,提出一种SiC MOSFET栅极驱动,进而研究揭示该驱动的短路保护策略。首先,基于跨导增益负反馈构造栅极驱动电路并分析其工作原理;其次,研究该驱动的串扰抑制能力与短路保护特性;最后,通过实验证明基于跨导增益负反馈的栅极驱动电路的可行性,及其在串扰抑制和短
近年来,多电平变换器成为高压、大功率电力电子系统应用领域的一个研究热点,而多电平脉宽调制PWM(pulse width modulation)控制方法是多电平变换器研究领域的核心问题之一。首先,阐述了3种载波PWM控制方法,并根据不同的控制指标介绍了各类优化载波PWM控制方法;其次,介绍了传统空间矢量脉宽调制SVPWM(space vector pulse width modulation)算法,并根据算法优化及控制指标详细介绍了不同坐标变换下的SVPWM,着重阐述了虚拟SVPWM及在其基础上衍生的各类优
为解决传统有限集模型预测电流控制FCS-MPCC(finite-control-set model predictive current control)方法下开关频率不固定和网侧电流谐波大等问题,以单相PWM整流器为研究对象,研究了一种两矢量有限集模型预测电流控制TV-FCS-MPCC(two-vector-based finite-control-set model predictive current control)方法。该方法根据整流器的3种电压矢量进行扇区划分,并在每个开关周期内同时作用一个扇