论文部分内容阅读
针对核磁共振并行成像重建提出了一种联合稀疏性模型,并与新的软阈值函数结合,将有助于提高重建图像质量。首先利用校准数据生成重建核,重建未采样数据点;然后采用联合稀疏性模型和新的软阈值函数,对各线圈图像数据进行处理;最后用改进的凸投影集算法(POCS)对压缩感知核磁共振并行成像进行重建。对于仿真图像和脑部图像,改进算法相比原算法,重建图像归一化均方根误差(nRMSE)在加速比为4时分别减少了23%和9%。实验结果表明,加速比较大时改进算法能明显提高并行成像重建图像的准确性。