论文部分内容阅读
利用无监督的核神经气聚类方法分析入侵报警数据,并针对核神经气聚类方法运行时间较长的缺点作了改进,加快了学习过程的速度而不影响其收敛性。利用改进的核神经气聚类方法对真正报警数据进行聚类.获得了各个神经元被作为获胜神经元的次数分布图,并根据此分布图获得报警的判别规则以区分误报警和真报警。实验采用网络入侵检测器Snort在实验环境下获得的攻击和正常数据产生的报警数据集,测试结果证明了提出的方法具有良好的性能:当滑窗长度为10时.在漏报增加率约为6%的代价下可以去除约81%的误报警。