【摘 要】
:
摘要:针对当前石油公司在液货船安全检查和准入审查中存在的非定量、非智能评估问题,引入人工智能技术构建液货船综合安全评估(formal safety assessment, FSA)专家系统模型。该模型将FSA方法与专家系统进行组合,前者通过风险识别、风险衡准和风险量化,解决报告的非定量评估和审查的主观性问题;后者引入K最近邻算法、加权赋值算法等解决审查评估的非智能化和效率低的问题。选取官方案例进行
【机 构】
:
中海油能源发展股份有限公司销售服务分公司,上海海事大学商船学院
【基金项目】
:
国家自然科学基金(51709168),上海市科技创新行动计划(18DZ1206104)。
论文部分内容阅读
针对当前石油公司在液货船安全检查和准入审查中存在的非定量、非智能评估问题,引入人工智能技术构建液货船综合安全评估(formal safety assessment,FSA)专家系统模型。该模型将FSA方法与专家系统进行组合,前者通过风险识别、风险衡准和风险量化,解决报告的非定量评估和审查的主观性问题;后者引入K最近邻算法、加权赋值算法等解决审查评估的非智能化和效率低的问题。选取官方案例进行模型检验,其结果表明提出的模型能有效地帮助石油公司实现船舶准入审查的定量化、智能化,并能显著提高审查效率,降低人工评估
其他文献
摘要:為提高船舶进出交通流密集区域的安全性、解决数据挖掘不充分的问题,基于AIS数据,将多种算法相结合,提出一种多元化的船舶交通流框架提取方法。利用Douglas-Peucker压缩算法和航迹交会算法分别提取交通流中的船舶转向点和航迹交会点。利用密度聚类算法对包括船位点在内的3种特征点进行数据挖掘,提取出更有代表性的特征点。将3种特征点进行加权融合,得到新的多元特征点,以点的大小表示其重要程度,最
摘要:为提高在天气恶劣、目标密集、目标被遮挡及其他复杂海况下船舶交通流统计的准确率,提出一种将目标检测算法CenterNet、多目标跟踪算法DeepSORT与凸包算法中优化逆时针(counter clockwise,CCW)判断的单线法相结合的船舶交通流视觉图像统计方法。使用Python对所选的数据和场景进行测试,结果表明:CenterNet在多场景检测中比YOLOv3更优秀;基于目标检测的多目标
摘要:针对自动化码头自动导引车(automated guided vehicle, AGV)在作业调度中的充电问题,以最小化所有任务完成时间为目标,建立考虑充电策略的AGV调度模型。对比求解器(Gurobi)与遗传算法的算例求解结果,验证遗传算法的高效性。设计4种充电方式并对其优劣性进行对比,分析AGV数量和续航能力对作业时间和充电利用率的影响。得出结论:按需充电的方式可以有效减少不必要的充电时间
针对内河船舶监管过程中对船舶干舷的测量还需人工巡航,增加了海事部门管理成本问题,提出一种不借助船舶水尺标志检测船舶干舷的方法。对采集的图像进行中值滤波预处理,去除孤立点、降低噪声敏感性;考虑图像颜色特性,应用自适应K均值聚类算法识别船舶区域;联合Canny边缘检测和霍夫直线检测的方法,标记船舶吃水线和甲板边线,并利用数学形态学方法提高检测准确性;基于标定相机和双目测距原理建立图像坐标与世界坐标转换