论文部分内容阅读
虚拟机的正常运行是支撑云平台服务的重要条件,由于云平台下虚拟机存在数量规模大、运行环境随时间动态变化的特点,管理系统难以针对每个虚拟机进行训练数据采集以及统计模型的训练。为了提高在上述环境下异常检测系统的实时性和识别能力,提出基于改进k中心点聚类算法的检测域划分机制,在聚类迭代更新步骤上进行优化,以提升检测域划分的速度,并通过检测域策略的应用来提高虚拟机异常检测的效率和准确率。实验及分析表明,改进的聚类算法拥有更低的时间复杂度,采用检测域划分机制的检测方法在虚拟机异常检测中拥有更高的效率和准确率。