论文部分内容阅读
将控制依赖自适应评估设计引入到非线性系统的辨识中,以寻求最佳模型.定义一个总评估函数表示系统在所历经时间内的辨识总误差,然后构造一个评估网络来近似逼近这个总评估函数.再构造一个辨识器网络,其输出直接作为评估网络的输入,这样通过最小化评估网络的输出就可以达到寻求最佳模型的目的.辨识器的参数修正原则不再是使当前时刻的辨识误差最小化,而是使评估网络的输出最小化,即使系统在所历经时间内的近似辨识总误差最小化,这样不仅大大加快了收敛速度而且取得了更加精确的辨识效果.在获得对象模型之后,还研究了利用神经网络设计模型参