论文部分内容阅读
Focused on the hot metal pretreatment process in the torpedo-car and based on the powder injection metallurgy principle, a kinetic model for dephosphorization of high-phosphorus hot metal pretreatment was developed. The validity of this model was verified by comparison between the experimental results in laboratory and the calculated results. The influences of dephosphorization capacity of molten slag and technological conditions on the dephosphorization efficiency were calculated by applying the model. The results show that lower temperatures are favorable to dephosphorization, CaO content in slag should be controlled at about 50%, suitable initial phosphorus content in the hot metal with higher phosphorus contents is about 0.35% by comprehensively considering various factors, slag systems of higher iron oxide content and higher basicity have higher capacity of dephosphorization.
Focused on the hot metal pretreatment process in the torpedo-car and based on the powder injection metallurgy principle, a kinetic model for dephosphorization of high-phosphorus hot metal pretreatment was developed. The validity of this model was verified by comparison between the experimental results in The influences of dephosphorization capacity of molten slag and technological conditions on the dephosphorization efficiency were calculated by applying the model. The results show that lower temperatures are favorable to dephosphorization, CaO content in slag should be controlled at about 50% , suitable initial phosphorus content in the hot metal with higher phosphorus contents is about 0.35% by comprehensively considering various factors, slag systems of higher iron oxide content and higher basicity have higher capacity of dephosphorization.