Deadline-aware network coding for video on demand service over P2P networks

来源 :Journal of Zhejiang University Science A(Science in Engineer | 被引量 : 0次 | 上传用户:fellting
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We are interested in providing Video-on-Demand (VoD) streaming service to a large population of clients using peer-to-peer (P2P) approach. Given the asynchronous demands from multiple clients, continuously changing of the buffered contents, and the continuous video display requirement, how to collaborate with potential partners to get expected data for future content delivery are very important and challenging. In this paper, we develop a novel scheduling algorithm based on deadline- aware network coding (DNC) to fully exploit the network resource for efficient VoD service. DNC generalizes the existing net- work coding (NC) paradigm, an elegant solution for ubiquitous data distribution. Yet, with deadline awareness, DNC improves the network throughput and meanwhile avoid missing the play deadline in high probability, which is a major deficiency of the con- ventional NC. Extensive simulation results demonstrated that DNC achieves high streaming continuity even in tight network conditions. We are interested in Providing Video-on-Demand (VoD) streaming service to a large population of clients using peer-to-peer (P2P) approach. Continuing changing of the buffered contents, and the continuous video display requirement, how to collaborate with potential partners to get expected expected data for future content delivery are very important and challenging. In this paper, we develop a novel scheduling algorithm based on deadline-aware network coding (DNC) to fully exploit the network resource for efficient VoD service. DNC generalizes the existing net-work coding (NC) paradigm, an elegant solution for ubiquitous data distribution. Yet, with deadline awareness, DNC improves the network throughput and meanwhile avoid missing the play deadline in high probability, which is a major deficiency of the con- ventional NC. Extensive simulation results of that DNC ​​achieves high streaming continuity even in tight network condition s.
其他文献
聚焦新形势下水资源监测预警、生态流量监测等“水利行业强监管”的要求,以及实时流量监测的迫切需要,在总结传统推流方法的基础上,基于影响流量的内在水力要素关联,通过对典