论文部分内容阅读
针对如何快速、准确地提取生物体触电故障暂态信号中的电力参数问题,提出了一种基于局部均值分解(local mean decomposition,LMD)的生物体触电时总泄漏电流信号瞬时参数提取方法,该方法首先利用局部均值分解将生物体触电时的总泄漏电流信号分解为一组乘积函数分量之和,每个乘积函数(product function,PF)分量可以表示为一个调幅信号和一个调频信号的乘积,然后由调幅信号和调频信号分别计算得到信号的瞬时幅值和瞬时频率。与采用希尔伯特黄变换方法相比,LMD具有瞬时频率曲线波动小和瞬时幅值函数端部失真小等优点。仿真信号分析结果表明:对测试信号进行LMD和经验模态分解(empirical mode decomposition,EMD)分解分别得到3个PF分量和5个IMF(intrinsic mode function)分量,分解前后信号的能量变化值分别为0.2851、0.5633,且LMD比EMD所需分解时间短0.0743s,与Hilbert变换相比,该文方法计算的瞬时幅值和瞬时频率更为平滑,在一定程度上避免了Hilbert变换计算过程中的负频率和端点效应现象。试验信号分析结果表明:对消噪后的总泄漏电流信号进行LMD和EMD分解,分别得到5和6个分量,分解前后信号的能量变化值各为0.5574、0.8896,所用分解时间分别为0.0835、0.2479 s;在求取瞬时频率方面,LMD方法求取的主导分量瞬时频率可判定生物体触电时刻,而经Hilbert变换求取的瞬时频率不仅无法判定生物体触电时刻,还出现了负的频率值,无法解释其物理意义;在求取瞬时幅值方面,该文方法与Hilbert变换求取的触电前总泄漏电流信号的瞬时幅值的平均值分别为11.3240、12.3728 m A,与原生物体无触电时总泄漏电流的幅值11.3538 m A的绝对误差分别为0.0298、1.0190 m A,另外,2种方法求取的生物体触电后总泄漏电流信号的瞬时幅值与原生物体触电后总泄漏电流的幅值的绝对误差分别为0.4340、0.6643 m A。因此,仿真信号和试验信号分析结果均证明所提方法是有效和可行的。