论文部分内容阅读
针对小数据集条件下离散BN参数学习的问题,为了将加性协同约束融入到BN参数学习过程中,通过借鉴经典保序回归算法的思想,提出四种处理加性协同约束的方法,进而利用经典的草地湿润模型对改进算法进行仿真,并与最大似然估计算法进行对比,仿真结果表明,改进算法在精度上有一定优势,能够很好的对最大似然估计算法进行修正,得到相对准确的参数,然而时效性则劣于最大似然估计算法。进一步将改进算法应用到弹道导弹突防模型的参数学习中,通过推理分析验证算法的有效性。