论文部分内容阅读
摘要:无砟轨道高速铁路的线形控制技术是铁路桥梁建设过程中又一全新而大胆的尝试,利用对铁路桥梁的顶面高程和平整度要求严为严格的特性,本文结合哈齐客运专线的工程实例,并依照灰色理论以及自适应控制方法对桥梁的拱度和预拱度进行了预测详述了无砟轨道高速铁路桥梁的线形控制技术。
关键词:无砟轨道 高速铁路桥梁 线形控制
中图分类号:U231文献标识码: A
前言:伴随我国社会经济的不断进步,交通事业的发展可谓日新月异,而城市的进步也给交通发展提出了越来越严苛的要求,使得道路交通开始向着越来越多元化的方向发展。客运专线在近十年间就发生了翻天覆地的变化。无砟轨道高速铁路桥梁的线形控制就是这一发展过程中非常重要的一部分,它在我国高速铁路桥梁的建筑史上具有重要的意义,将高速铁路桥梁的发展推向了一个全新的高度。因此,本文针对无砟轨道桥梁的特点对无砟轨道高速铁路桥梁的施工控制方法及措施进行研究.
1、无砟轨道桥梁施工控制特点
对于一般的有砟轨道桥梁,桥梁施工控制仅给出箱梁底板立模高程即可,梁顶板立模高程根据箱梁底板立模高程和该段梁高确定,由于现有施工技术水平限制,一般有砟轨道桥梁混凝土浇筑后的梁面不平顺,高程起伏较大.但对于无砟轨道客运专线(高速铁路)桥梁,列车运行速度较快,轨道的平顺度要求较高,如京津城际客运专线采用Ⅱ型板式无砟轨道系统,Ⅱ型板式无砟轨道桥梁桥面系统主要构造为箱梁、底座板、轨道板,箱梁和底座板整体结构分离,为保证底座板在温度等因素的作用下可以自由伸缩,梁面的平整度精度要求较高.
另外,Ⅱ型板的铺设对于梁面高程及徐变上拱值要求也较高,为使梁顶高程满足浇筑底座板和铺设Ⅱ型无砟轨道板的需要,需要对梁顶面高程进行严格控制.由于无砟轨道桥梁对梁体的平顺度要求较高,这样对桥梁的施工控制提出了更高的要求,不仅合拢前合拢段两端的合拢误差不能过大,在桥面系施工完成后梁面的绝对标高也要满足要求。故在施工过程中需要准确估计后续工序对本阶段梁的位移影响.
2、无砟轨道桥梁顶面线形控制
在箱梁混凝土浇筑后,若顶板高程与设计高程有偏差,则需要在铺设底座板之前对梁面高程进行修整,若超出较多,不但修整的工作量很大,且会影响顶板钢筋的保护层厚度,对结构的耐久性等产生影响.为减小箱梁顶板混凝土面的后期修整量,提出了将箱梁顶面及底面高程同时控制的施工控制措施,另外还提出了箱梁顶面在混凝土浇筑即将完成时的梁面高程,如下所示:
式中: h1 为混凝土浇筑即将完成时的箱梁顶面高程;
htop为浇筑混凝土前的箱梁底面立模高程;
hlI为本段前端梁高;
fcon为浇筑本段混凝土时本段前端预测挠度;
fgl为预测本段挂篮变形.
根据式(1)计算的梁顶面立模高程,在混凝土即将浇筑完成时控制完成梁顶面的浇筑工作,可以消除本阶段预测挂篮变形及预测浇筑混凝土产生的梁端挠度误差对梁顶面高程的影响,减小后期梁面的修整工作,保证结构顶板钢筋的保护层厚度.
3、施工控制方法
为达到良好的线形控制效果,需要对后续工序对已浇筑混凝土梁段的挠度影响进行准确预测,在无砟轨道高速铁路大跨度桥的施工控制过程中引入灰色理论及自适应控制方法进行线形控制,并采用最小二乘法对参数进行调整[3_6].
3.1 灰色控制理论
灰色理论的特点是以现有信息为基础来进行数据加工和处理,建立灰模型來预测系统未来发展变化,灰色系统模型的主要模型是GM(1,N)模型.GM(1,N)模型适合于各变量动态关联分析,适合于为高阶系统建模提供基础,但不适合预测用.适合预测的模型只能是单变量模型即GM(1,1)模型[3_6].利用灰色理论建立的模型其形式为:
(2)
式中:a为发展系数;
B为灰作用量;
X(1)为原始数列
X(0)的一次累加生成数列.
解方程(2)可得:
式(3)也称为GM(1,1)的预测响应式,其还原值为
对于悬臂施工桥梁,一般将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.
3.2 自适应控制方法
对于预应力混凝土桥梁,施工中每个工况的受力状态达不到设计所确定的理想目标的重要原因是有限元计算模型中的计算参数取值,主要是混凝土的弹性模量、材料的比重、徐变系数等与施工中的实际情况有一定的差距.要得到比较准确的控制凋整量,必须根据施工中实测到的结构反应修正计算模型中的这些参数值,以使计算模型在与实际结构磨合一段时间后,自动适应结构的物理力学规律,图1为自适应控制的原理图(8).
对于悬臂浇筑的桥梁,主梁在墩顶附近的相对线刚度较大,变形较小,因此,在控制初期,参数不准确带来的误差对全桥线形的影响较小,这对于上述自适应控制思路的应用是非常有利的.经过几个节段的施工后,计算参数已得到修正,为跨中变形较大的节段的施工控制创造了良好的条件.
4、施工控制实例
4.1 工程概况
哈齐客运专线起自哈尔滨站止于齐齐哈尔站。本段为哈齐客专一标段(里木店特大桥部分),线路设计时速250km/m。(本桥桥面铺设无缝线路,钢轨为60kg/m,轨高0.176m)地处哈尔滨市与肇东市交界处,线路基本呈东南---西北走向,地势平坦。线路大致与既有滨州线并行。里程为DK36+161.99至DK41+197.92里木店特大桥(桥长5041m),共有155个墩含2个桥台。本桥桥梁为预制混凝土箱梁跨度为32.7米共154跨。
4.2 本桥特点
对于大跨度梁式桥,一般采用悬臂施工,不同的结构形式,不同的施工顺序(合拢顺序、预应力张拉顺序)对桥梁的累计位移和预拱度设置均有较大影响.为此本文以哈齐客运专线里木店特大桥部分比较无砟轨道桥梁的累积位移.跨四环桥与其他悬臂浇筑连续梁桥的不同在于该桥为不对称桥梁,梁体竖向刚度较小,中跨悬臂长度较大,且有张拉吊杆的横隔板,施工顺序为悬臂施工到14 块一边跨支架浇筑现浇段一拆除边跨现浇支架(边跨未安装支座,为悬臂结构)一中跨施工15#、16 块一合拢一拆除临时支撑,安装边跨支座一施工拱一张拉吊杆一桥面系施工.为说明本桥与一般连续梁结构的不同,以哈齐客运专线里木店特大桥部分作为对比,跨五环桥原设计方案为全部悬臂施工,悬臂4#块后改为支架施工,故列出五环桥的两种不同施工方法的计算结果.对于预应力混凝土连续梁桥,若已施工梁段上出现误差,除张拉预备预应力束外,基本没有调整的余地,且这一调整量也是非常有限的,而且对梁体受力不利.因此,一旦出现线形误差,误差将永远存在,对未施工梁段可以通过立模高程调整已施工梁段的残余误差,如果残余误差较大,则调整需经过几个梁段才能完成.对于无砟轨道高速铁路桥梁,若施工过程中梁体线形出现较大的施工误差,将给后续工序带来较大的困难,需在施工过程中严格控制梁体线形.
4.3 灰色理论与自适应控制方法的结合应用,
连续梁拱组合桥的施工过程随着时间的推移,其影响因素诸如温度、湿度和其它的一些因素是逐步变化的,且这种变化是一种随机的灰色过程.为计人这些影响因素的变化,确保所建立模型的有效性,必须进行反馈校正.在利用灰色理论施工控制时,对理论值与实测值建立误差序列,以此为原始序列,建立GM(1,1)模型,并及时采用新陈代谢模型进行模型的反馈校正,即每补充一个新值,便去掉一个最老的数据,以维持数据序列的维数,采用这种处理方法可使预测模型得到有效的修正,提高预测精度.对于跨四环桥,将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.在第i节段施工完成后,测得前 节段挠度变化、实际拱度实测值,考虑到温度对梁体挠度的影响,挠度观测均在日出前进行.理论挠度、拱度由桥梁专业软件BSAS建立模型求得.
对于悬臂施工桥梁,预拱度设置的准确与否主要在于结构各阶段的位移预测是否准确9,在无砟轨道高速铁路桥梁的施工控制中可以引入灰色理论和自适应控制方法两种预测方法进行预测结构的变形,从而确定结构的预拱度.在进行实测结果和理论结果的误差分析时,为消除测量误差带来的影响对实测结果进行了曲线拟合,采用拟合后的数据进行预测;自适应控制方法的关键在于参数估计,对于无砟轨道桥梁可采用最小二乘法进行参数估计6.
预测完成后对两种方法的预测挠度结果进行比较,确定下一阶段结构的预拱度.跨四环桥159#墩II#一14 块浇筑混凝土时的梁端部竖向挠度如表1所示.
两种方法预测的各阶段梁体撓度与实测挠度值较为接近,灰色理论预测的挠度相对与实测值较为接近,在位移较大的中跨侧,灰色理论预测的预拱度值较自适应控制方法稍大,但相差不大,两种方法均可用于大跨度无砟轨道高速铁路桥梁的施工监控,实际监控中可采用两种方法结合预测.
4.4 线形控制结果
以159 墩为例,14 块施工阶段梁体竖向挠度与理论挠度对比.16 块施工阶段梁体竖向挠度与理论挠度对比.由于灰色理论预测仅对梁端部竖向位移进行了预测,故仅列出自适应控制方法的理论位移结果10.
在本桥的施工监控工作中,相对于普通桥梁,在混凝土即将浇筑完成时增加了一次测量工序,应用式(1)控制梁顶面标高,跨四环桥成桥后梁体实际线形与理想线形的对比如图7所示,理想线形为倒退分析所得的理想状态计算结果.施工阶段实测位移与预测位移较为接近,说明在本桥监控中预测方法较为准确的反映了实际情况;成桥后梁体实际线形与理论线形较为接近,误差均在1 C1TI以内,四环后期桥面修整工作不大即可满足铺设桥面板的平整度要求,节省了工期时间,保证了铺设桥面板等工序的顺利进行.由哈齐客运专线里木店特大桥动态检测报文提出的梁面标商控制方法适合于无砟轨道高速铁桥的施工控制中,高程的测量需要精密测量仪器来测量.
结语:综上所述,在无砟轨道高速铁路桥梁的线形控制技术方面,我们还有很多值得探究之处,要在已有基础上进一步的完善无砟轨道交通的设计理论,不断地加强无砟轨道桥梁的技术标准与技术要求,以更好的为我国高速铁路事业推波助澜,将我国的高速铁路事业推向一个全新的阶段。
参考文献:
[1] 何华武.无砟轨道技术[M].北京:中国铁道出版社,2005.
[2] 卢祖文.客运专线铁路轨道[M].北京:中国铁道出版社,2005.
关键词:无砟轨道 高速铁路桥梁 线形控制
中图分类号:U231文献标识码: A
前言:伴随我国社会经济的不断进步,交通事业的发展可谓日新月异,而城市的进步也给交通发展提出了越来越严苛的要求,使得道路交通开始向着越来越多元化的方向发展。客运专线在近十年间就发生了翻天覆地的变化。无砟轨道高速铁路桥梁的线形控制就是这一发展过程中非常重要的一部分,它在我国高速铁路桥梁的建筑史上具有重要的意义,将高速铁路桥梁的发展推向了一个全新的高度。因此,本文针对无砟轨道桥梁的特点对无砟轨道高速铁路桥梁的施工控制方法及措施进行研究.
1、无砟轨道桥梁施工控制特点
对于一般的有砟轨道桥梁,桥梁施工控制仅给出箱梁底板立模高程即可,梁顶板立模高程根据箱梁底板立模高程和该段梁高确定,由于现有施工技术水平限制,一般有砟轨道桥梁混凝土浇筑后的梁面不平顺,高程起伏较大.但对于无砟轨道客运专线(高速铁路)桥梁,列车运行速度较快,轨道的平顺度要求较高,如京津城际客运专线采用Ⅱ型板式无砟轨道系统,Ⅱ型板式无砟轨道桥梁桥面系统主要构造为箱梁、底座板、轨道板,箱梁和底座板整体结构分离,为保证底座板在温度等因素的作用下可以自由伸缩,梁面的平整度精度要求较高.
另外,Ⅱ型板的铺设对于梁面高程及徐变上拱值要求也较高,为使梁顶高程满足浇筑底座板和铺设Ⅱ型无砟轨道板的需要,需要对梁顶面高程进行严格控制.由于无砟轨道桥梁对梁体的平顺度要求较高,这样对桥梁的施工控制提出了更高的要求,不仅合拢前合拢段两端的合拢误差不能过大,在桥面系施工完成后梁面的绝对标高也要满足要求。故在施工过程中需要准确估计后续工序对本阶段梁的位移影响.
2、无砟轨道桥梁顶面线形控制
在箱梁混凝土浇筑后,若顶板高程与设计高程有偏差,则需要在铺设底座板之前对梁面高程进行修整,若超出较多,不但修整的工作量很大,且会影响顶板钢筋的保护层厚度,对结构的耐久性等产生影响.为减小箱梁顶板混凝土面的后期修整量,提出了将箱梁顶面及底面高程同时控制的施工控制措施,另外还提出了箱梁顶面在混凝土浇筑即将完成时的梁面高程,如下所示:
式中: h1 为混凝土浇筑即将完成时的箱梁顶面高程;
htop为浇筑混凝土前的箱梁底面立模高程;
hlI为本段前端梁高;
fcon为浇筑本段混凝土时本段前端预测挠度;
fgl为预测本段挂篮变形.
根据式(1)计算的梁顶面立模高程,在混凝土即将浇筑完成时控制完成梁顶面的浇筑工作,可以消除本阶段预测挂篮变形及预测浇筑混凝土产生的梁端挠度误差对梁顶面高程的影响,减小后期梁面的修整工作,保证结构顶板钢筋的保护层厚度.
3、施工控制方法
为达到良好的线形控制效果,需要对后续工序对已浇筑混凝土梁段的挠度影响进行准确预测,在无砟轨道高速铁路大跨度桥的施工控制过程中引入灰色理论及自适应控制方法进行线形控制,并采用最小二乘法对参数进行调整[3_6].
3.1 灰色控制理论
灰色理论的特点是以现有信息为基础来进行数据加工和处理,建立灰模型來预测系统未来发展变化,灰色系统模型的主要模型是GM(1,N)模型.GM(1,N)模型适合于各变量动态关联分析,适合于为高阶系统建模提供基础,但不适合预测用.适合预测的模型只能是单变量模型即GM(1,1)模型[3_6].利用灰色理论建立的模型其形式为:
(2)
式中:a为发展系数;
B为灰作用量;
X(1)为原始数列
X(0)的一次累加生成数列.
解方程(2)可得:
式(3)也称为GM(1,1)的预测响应式,其还原值为
对于悬臂施工桥梁,一般将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.
3.2 自适应控制方法
对于预应力混凝土桥梁,施工中每个工况的受力状态达不到设计所确定的理想目标的重要原因是有限元计算模型中的计算参数取值,主要是混凝土的弹性模量、材料的比重、徐变系数等与施工中的实际情况有一定的差距.要得到比较准确的控制凋整量,必须根据施工中实测到的结构反应修正计算模型中的这些参数值,以使计算模型在与实际结构磨合一段时间后,自动适应结构的物理力学规律,图1为自适应控制的原理图(8).
对于悬臂浇筑的桥梁,主梁在墩顶附近的相对线刚度较大,变形较小,因此,在控制初期,参数不准确带来的误差对全桥线形的影响较小,这对于上述自适应控制思路的应用是非常有利的.经过几个节段的施工后,计算参数已得到修正,为跨中变形较大的节段的施工控制创造了良好的条件.
4、施工控制实例
4.1 工程概况
哈齐客运专线起自哈尔滨站止于齐齐哈尔站。本段为哈齐客专一标段(里木店特大桥部分),线路设计时速250km/m。(本桥桥面铺设无缝线路,钢轨为60kg/m,轨高0.176m)地处哈尔滨市与肇东市交界处,线路基本呈东南---西北走向,地势平坦。线路大致与既有滨州线并行。里程为DK36+161.99至DK41+197.92里木店特大桥(桥长5041m),共有155个墩含2个桥台。本桥桥梁为预制混凝土箱梁跨度为32.7米共154跨。
4.2 本桥特点
对于大跨度梁式桥,一般采用悬臂施工,不同的结构形式,不同的施工顺序(合拢顺序、预应力张拉顺序)对桥梁的累计位移和预拱度设置均有较大影响.为此本文以哈齐客运专线里木店特大桥部分比较无砟轨道桥梁的累积位移.跨四环桥与其他悬臂浇筑连续梁桥的不同在于该桥为不对称桥梁,梁体竖向刚度较小,中跨悬臂长度较大,且有张拉吊杆的横隔板,施工顺序为悬臂施工到14 块一边跨支架浇筑现浇段一拆除边跨现浇支架(边跨未安装支座,为悬臂结构)一中跨施工15#、16 块一合拢一拆除临时支撑,安装边跨支座一施工拱一张拉吊杆一桥面系施工.为说明本桥与一般连续梁结构的不同,以哈齐客运专线里木店特大桥部分作为对比,跨五环桥原设计方案为全部悬臂施工,悬臂4#块后改为支架施工,故列出五环桥的两种不同施工方法的计算结果.对于预应力混凝土连续梁桥,若已施工梁段上出现误差,除张拉预备预应力束外,基本没有调整的余地,且这一调整量也是非常有限的,而且对梁体受力不利.因此,一旦出现线形误差,误差将永远存在,对未施工梁段可以通过立模高程调整已施工梁段的残余误差,如果残余误差较大,则调整需经过几个梁段才能完成.对于无砟轨道高速铁路桥梁,若施工过程中梁体线形出现较大的施工误差,将给后续工序带来较大的困难,需在施工过程中严格控制梁体线形.
4.3 灰色理论与自适应控制方法的结合应用,
连续梁拱组合桥的施工过程随着时间的推移,其影响因素诸如温度、湿度和其它的一些因素是逐步变化的,且这种变化是一种随机的灰色过程.为计人这些影响因素的变化,确保所建立模型的有效性,必须进行反馈校正.在利用灰色理论施工控制时,对理论值与实测值建立误差序列,以此为原始序列,建立GM(1,1)模型,并及时采用新陈代谢模型进行模型的反馈校正,即每补充一个新值,便去掉一个最老的数据,以维持数据序列的维数,采用这种处理方法可使预测模型得到有效的修正,提高预测精度.对于跨四环桥,将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.在第i节段施工完成后,测得前 节段挠度变化、实际拱度实测值,考虑到温度对梁体挠度的影响,挠度观测均在日出前进行.理论挠度、拱度由桥梁专业软件BSAS建立模型求得.
对于悬臂施工桥梁,预拱度设置的准确与否主要在于结构各阶段的位移预测是否准确9,在无砟轨道高速铁路桥梁的施工控制中可以引入灰色理论和自适应控制方法两种预测方法进行预测结构的变形,从而确定结构的预拱度.在进行实测结果和理论结果的误差分析时,为消除测量误差带来的影响对实测结果进行了曲线拟合,采用拟合后的数据进行预测;自适应控制方法的关键在于参数估计,对于无砟轨道桥梁可采用最小二乘法进行参数估计6.
预测完成后对两种方法的预测挠度结果进行比较,确定下一阶段结构的预拱度.跨四环桥159#墩II#一14 块浇筑混凝土时的梁端部竖向挠度如表1所示.
两种方法预测的各阶段梁体撓度与实测挠度值较为接近,灰色理论预测的挠度相对与实测值较为接近,在位移较大的中跨侧,灰色理论预测的预拱度值较自适应控制方法稍大,但相差不大,两种方法均可用于大跨度无砟轨道高速铁路桥梁的施工监控,实际监控中可采用两种方法结合预测.
4.4 线形控制结果
以159 墩为例,14 块施工阶段梁体竖向挠度与理论挠度对比.16 块施工阶段梁体竖向挠度与理论挠度对比.由于灰色理论预测仅对梁端部竖向位移进行了预测,故仅列出自适应控制方法的理论位移结果10.
在本桥的施工监控工作中,相对于普通桥梁,在混凝土即将浇筑完成时增加了一次测量工序,应用式(1)控制梁顶面标高,跨四环桥成桥后梁体实际线形与理想线形的对比如图7所示,理想线形为倒退分析所得的理想状态计算结果.施工阶段实测位移与预测位移较为接近,说明在本桥监控中预测方法较为准确的反映了实际情况;成桥后梁体实际线形与理论线形较为接近,误差均在1 C1TI以内,四环后期桥面修整工作不大即可满足铺设桥面板的平整度要求,节省了工期时间,保证了铺设桥面板等工序的顺利进行.由哈齐客运专线里木店特大桥动态检测报文提出的梁面标商控制方法适合于无砟轨道高速铁桥的施工控制中,高程的测量需要精密测量仪器来测量.
结语:综上所述,在无砟轨道高速铁路桥梁的线形控制技术方面,我们还有很多值得探究之处,要在已有基础上进一步的完善无砟轨道交通的设计理论,不断地加强无砟轨道桥梁的技术标准与技术要求,以更好的为我国高速铁路事业推波助澜,将我国的高速铁路事业推向一个全新的阶段。
参考文献:
[1] 何华武.无砟轨道技术[M].北京:中国铁道出版社,2005.
[2] 卢祖文.客运专线铁路轨道[M].北京:中国铁道出版社,2005.