论文部分内容阅读
针对传统关联波门设计方法在应用于机动目标跟踪时容易引起失跟、以及概率数据关联算法不适于多交叉目标跟踪的问题,提出了一种基于人类视觉选择性注意机制和知觉客体的“特征整合”理论的认知雷达数据关联算法.算法以综合交互式多模型概率数据关联算法为基础,采取假设目标最大机动水平已知的“当前”统计模型和匀速运动模型作为模型集,通过实时交互使关联波门能够随目标机动动态调整,较好地兼顾了雷达计算耗时和跟踪成功率.在利用目标位置特征的基础上,进一步提取、整合目标运动特征,对关联波门交叉区域公共量测进行分类,使多交叉目标跟踪问题转化为多个单目标跟踪问题,优化了传统概率数据关联算法.仿真结果表明:与传统关联波门设计方法相比,算法跟踪失败率和计算耗时明显降低;而且在计算资源增加不大的情况下,杂波环境适应性也得到了显著增强.