论文部分内容阅读
在大规模文本语料库上预先训练的BERT等神经语言表示模型可以很好地从纯文本中捕获丰富的语义信息.但在进行中文命名实体识别任务时,由于中文命名实体存在结构复杂、形式多样、一词多义等问题,导致中文命名实体识别效果不佳.考虑到知识图谱可以提供丰富的结构化知识事实,从而更好地进行语言理解,提出了一种融合知识图谱信息的中文命名实体识别方法,通过知识图谱中的信息实体增强语言的外部知识表示能力.实验结果表明,与BILSTM-CRF、BERT等方法相比,所提出的方法有效提升了中文命名实体的识别效果,在MSRA与搜狐新闻网