论文部分内容阅读
一、前言目前,国内外生产气缸套、活塞环配对摩擦付,多采用往铸铁中添加磷、硼、钒、钛、铌、钨、铬等微量元素的方法,来提高铸铁组织中硬质相的显微硬度和强化基体组织。例如硼钨铬多元合金的气缸套,其耐磨性均优于其它材质。其原因主要是铸铁中含有硼、钨、铬、锰、铌、钽、钒、钛等多种合金元素。那么,这些合金元素在碳化物中分布情况究竟如何?为此,本文用X光能谱和扫描电镜对3种不同化学成分的铸铁气缸套中钨、钒、钛、铌、钽、磷等元素的分布情况以及合金碳化物的组成元素进行了初步分析。二、试验方法试样取自硼钨铬多元合金铸铁、钒钛铸铁和铌铸铁的气缸套上,其常规化学成分见表1。供电子探针分析用10×10×5毫米试样,
I. Introduction At present, the domestic and international production of cylinder liner, piston ring matching friction pay more use of cast iron to add phosphorus, boron, vanadium, titanium, niobium, tungsten, chromium and other trace elements to improve the hardness of cast iron The microhardness and strengthen the matrix organization. Such as boron tungsten chromium alloy cylinder liner, its wear resistance are better than other materials. The main reason is that cast iron contains boron, tungsten, chromium, manganese, niobium, tantalum, vanadium, titanium and other alloying elements. So, what is the distribution of these alloying elements in the carbide? To this end, X-ray spectroscopy and scanning electron microscopy of three different chemical composition of the cast iron cylinder liner tungsten, vanadium, titanium, niobium, tantalum, phosphorus and other elements The distribution of carbides and the composition of the elements were analyzed. Second, the test method Specimens from boron tungsten chromium alloy cast iron, vanadium titanium cast iron and niobium cylinder liner, the conventional chemical composition shown in Table 1. Electron probe analysis with 10 × 10 × 5 mm sample,