Attribute reduction in interval-valued information systems based on information entropies

来源 :Frontiers of Information Technology & Electronic Engineering | 被引量 : 0次 | 上传用户:fjzxf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems. Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval- systems .eded, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attrib ute reduction in interval-valued information systems.
其他文献
由于经济发展速度加快,社会需求不断增多,使得建筑的高度不断加高,形态愈加复杂,建筑结构中抗震设计也趋于多样化。本文就建筑结构中抗震设计理念,分析几大影响建筑抗震能力的因素
期刊
对于桥梁结构中的大体积混凝土施工的特点,解析了容易引起裂缝产生的水化热、温差及收缩等原因。本文就桥梁大体积混凝土温度裂缝产生原因进行分析并给予对策。
期刊
期刊
在含有缺失数据的统计推断中关键问题是缺失机制模型的描述,而缺失机制模型中参数的可识别性是一个重要且复杂的问题。本文借助图链模型描述数据缺失机制,探讨一个及两个时间点
近年来,全国不断出现企业会计信息造假事件,不仅危害到消费者以及投资者的个人利益,还损害了国内企业的声誉.例如,股市不断有企业因财务造假而退市,欣泰电气就是其中之一.因
本文考虑了二维四阶非线性修正Riemann-Liouville时间分数阶扩散方程的有限元方法.由于四阶空间导数的存在,为了避免高次元的使用,我们引入了一个中间变量σ=?u,使得原始四阶
期刊
期刊
非线性泛函分析是现代分析数学中的一个重要分支学科.它为解决当今在物理学、化学、数学、生物学、医学、经济学、工程学、控制论等科学领域出现的各种各样的非线性问题提供
期刊