论文部分内容阅读
针对在观测条件较差的情况下卡尔曼滤波的鲁棒性较差,本文设计了一种自适应卡尔曼滤波模型。通过实际车载GPS/DR组合导航试验,结果表明该模型在观测质量较差的情况下能够抑制较大的偏差,相对于标准卡尔曼滤波模型,其平面定位精度提高了近一倍,达到2~3m。因此,在观测环境较差的情况下建议采用渐消自适应卡尔曼滤波模式进行组合导航。