论文部分内容阅读
由于室内环境的复杂性和多变性,导致单独采用Rat SLAM算法进行定位存在视觉里程计可靠性低、环境适应性较弱及RGB图像在图像识别邻域应用效果较差等问题。针对这些问题,提出了一种替代原始Rat SLAM模型中的绝对差总和(SAD)匹配的新型图像匹配方法,先利用HSV图像特征进行图像全局特征的粗匹配,再利用SURF与ORB融合算法进一步进行局部特征的精确匹配,辅助Rat SLAM模型更好地完成模板匹配,进而实现对位姿细胞网络活性的更准确修正,最终得到优良的路径经历图。仿真实验表明:改进后的Rat SL