Bi-Te基薄膜热电材料的研究进展

来源 :材料导报 | 被引量 : 0次 | 上传用户:xushuai880620
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
热电材料是一种能够实现热能与电能直接转换的功能材料,由于无法有效降低块体热电材料的热导率,其性能研究进展缓慢.自上世纪90年代初Hicks等提出了低维化能够显著提高热电材料性能的理论后,薄膜热电材料开始受到广泛关注.低维化提高材料性能的原因主要是材料在低维化后能够产生量子限制效应,使得电子在被压缩维度的运动受到限制.首先,在费米能级附近,与Seebeck系数呈正相关的电子态密度会增大,导致低维热电材料的Seebeck系数相比块体材料显著增大.其次,与块体材料相比,薄膜材料存在更多能够散射声子的晶界,能有效降低晶格热导率.在这两种效应的共同作用下,材料的热电优值(ZT值)能够显著增大.低维热电材料的研究初期主要是通过数学模型和数值计算,从理论上证明量子效应会影响材料的Seebeck系数和电导率,且能实现二者的独立控制,从而提高材料的ZT值.后期的实验数据证明,通过合适的热处理工艺能够有效降低薄膜材料的缺陷,提高其综合性能.因此,热处理工艺的改进对性能的提升也非常重要.热电材料性能的提升离不开制备工艺的进步.为了获得低维化的热电材料,多种薄膜材料制备工艺被用于样品的制备,且不同的制备工艺各有优缺点.Bi-Te基合金不仅可用于低温发电还可用于低温制冷,是目前应用最广泛的低温热电材料,虽然其块体状态下的热电性能研究已趋于完善,但其薄膜状态下热电性能的理论研究还相差甚远,因此Bi-Te基低温薄膜热电材料成为研究热点.本文介绍了国内外采用不同制备工艺生长Bi-Te基热电薄膜材料的发展状况以及热电性能测试方法,提出了在目前发展薄膜热电材料时需要重点关注的方面,并对低维热电材料的发展方向进行了阐述.
其他文献
电力工业废渣通过碱激发可再生成一种新型的、绿色的高性能无机聚合物胶凝材料.试验以一级低钙粉煤灰为原材料、水玻璃和氢氧化钠为复合碱性激发剂制备粉煤灰地聚物,通过无侧限抗压强度试验、X射线衍射试验和扫描电镜试验,研究碱激发剂模数和养护龄期的变化对粉煤灰地聚物力学性能的影响.试验结果表明:激发剂模数是影响地聚物试样力学性能的重要因素,随着模数的增大,试样无侧限抗压强度先增大后减小,在各养护龄期下模数为1.1时试样的无侧限抗压强度最高;粉煤灰玻璃体在碱性溶液的侵蚀破坏下发生解聚-缩聚反应,生成的N-A-S-H凝胶
随着资源和环境问题日益突出,世界各国均对汽车工业节能减排提出了迫切的要求.用铸造耐热铝合金替代铸铁可大幅度减轻车身质量,因此铸造耐热铝合金成为新一代汽车发动机缸体和活塞的主流材料.然而,商业铸造铝合金的高温性能并不能较好地满足当前应用需求,并且快速凝固铝合金和铝基复合材料受限于高昂成本和制备复杂性而不能被大范围推广.因此,目前学术界和产业界的研究多集中于铸造铝合金耐热性能的提升和新型高温强化机理的探索.铸造耐热铝合金可分为三个体系:Al?Si、Al?Cu和Al?Mg.其中,Al?Si合金因具备优异的铸造流