A multi-target stance detection based on Bi-LSTM network with position-weight

来源 :高技术通讯(英文版) | 被引量 : 0次 | 上传用户:wyingying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In the task of multi-target stance detection, there are problems the mutual influence of content describing different targets, resulting in reduction in accuracy. To solve this problem, a multi-target stance detection algorithm based on a bidirectional long short-term memory ( Bi-LSTM) network with position-weight is proposed. First, the corresponding position of the target in the input text is calcu-lated with the ultimate position-weight vector. Next, the position information and output from the Bi-LSTM layer are fused by the position-weight fusion layer. Finally, the stances of different targets are predicted using the LSTM network and softmax classification. The multi-target stance detection cor-pus of the American election in 2016 is used to validate the proposed method. The results demon-strate that the Bi-LSTM network with position-weight achieves an advantage of 1 . 4% in macro aver-age F1 value in the comparison of recent algorithms.
其他文献
又到一年毕业季。2012年6月,北京租房价格在不断上扬中迎来历史最高点。原以为5月31日北京市发布的《北京市人民政府办公厅关于进一步规范房屋租赁市场稳定房屋租金工作的意见》(下称《意见》)是这个夏季吹来的一股凉风,迄今却只是雷声大雨点小。在没有感受其惠泽的同时,高租金让北京市租房者陷入焦灼状态。  租金疯涨——  只有更贵没有最贵  罗同学今年7月将从中国人民大学硕士毕业,目前已经签订学校附近的一
目的 探讨Pentacam眼前节分析系统检测的角膜前后表面曲率和高度参数在临床期圆锥角膜、亚临床期圆锥角膜和正常角膜中的变化以及Pentacam眼前节分析系统在圆锥角膜早期诊断