论文部分内容阅读
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning.Through introducing multiple kernel learning into the SVM incremental learning,large scale data set learning problem can be solved effectively.Furthermore,different punishments are adopted in allusion to the training subset and the acquired support vectors,which may help to improve the performance of SVM.Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning,but also improve the classification or prediction precision.