非均权-动态规划地址匹配算法设计与实现

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:cbbbb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的地址匹配方法往往难以胜任中文地址匹配问题.首先,每个中文单字都是独立整体,在纠错上难度大于英文,其次中文地址体系结构复杂,缺乏一个统一的标准.本文结合生物信息领域的序列比对思想,提出了一种基于动态规划的中文地址匹配方法.该方法将中文单字看成字符单元,对中文地址进行序列化,改进Smith-waterman算法进行序列匹配.针对中文的单字特点,统计区分文字的重要性差异,构建非均权打分策略;引入空分罚分策略,解决错误匹配及其过度拟合问题;使用排序均一化策略,优化了排序效率,增加了结果集的多样性.最后,将本算法应用于杭州市实际路网(1∶30万),实验结果表明,该算法可以有效提升中文地址匹配精度.
其他文献
文中对配电房视频智能分析系统软硬件功能、结构和原理等进行了详细介绍,以视频采集信息为基础,实现授权管理、安全穿戴、环境监控等方面的智能识别,并通过实验验证了此次研究的系统的有效性,提高配电房全天候监控系统维护工作效率、运维效果,并能够减少人员、设备等的故障,具备实际应用意义.
随着推荐系统的广泛应用,它正在对社会产生越来越大的影响.由于数据、算法等原因,推荐系统可能会对具有某些特性的群体产生带有偏见的结果,导致不公平现象的产生,从而引发各种问题.消除偏见并在推荐中实现一定的公平性,会使整个推荐系统的结果更加平衡、友好.对推荐系统的公平性进行评价是提高推荐系统公平性的基础,近年来,研究者提出了各种不同的推荐系统公平性评价方法.本文系统总结了近几年的研究成果,从3个维度对推荐系统公平性进行了分类介绍,重点从利益相关者的维度详细分析并总结了在各种推荐环境下出现的公平性定义和评价标准,
自动语音识别系统(ASR)能将输入语音转换为对应的文本,其性能因深度学习技术的发展得到了显著提高.然而,通过在输入语音中添加微小扰动而生成的对抗样本,可以使人类毫无察觉的同时让ASR系统产生不可预测的,甚至是攻击性的指令.这种新型的对抗样本攻击给基于深度学习的ASR系统带来了诸多安全隐患.本文对语音对抗样本作了系统性的分析和梳理,提出了对现有对抗样本的分类.其次介绍了面向ASR系统的对抗样本生成方法.同时,阐述了典型的对抗样本防御策略.最后讨论了对抗样本带来的挑战,并分别就如何使生成的攻击更加逼真,和增强
共识算法作为区块链的核心技术,决定了区块链系统的性能.其中,PBFT是最具有代表性的一种共识算法,但它存在以下缺点:通信代价大、共识时延长.由此诞生了许多通过各种方法减小共识节点规模来提升PBFT效率的一类算法,但是它们都不是基于距离因素的,并且具有与PBFT类似的缺点.基于此,本文提出了一种基于距离的面向区块链的共识算法.首先通过Grouping算法对节点进行分组,将距离较近的节点分成一组进行共识,从而在缩短共识节点之间距离的基础上减少共识时延.同时结合speculation技术,降低节点间通信的时间复
基于面部视觉特征的抑郁症诊断方法借助计算机视觉技术,通过分析被试的面部肌肉和眼球相关运动特征来辅助抑郁症的早期检测.与目前临床上通常采用的医生访谈方式相比,基于面部视觉特征的抑郁症诊断法具有被试无须与外人外物交流接触且客观高效、普及性强与成本低的显著优点,可极大缓解医生患者比例不足、误诊率偏高现状,拥有广阔应用前景.本文从抑郁症患者的面部行为特点入手,综合介绍了目前常用的诱发实验范式、现有面部视觉特征公开数据库及基于面部视觉特征的抑郁症诊断的最新研究成果,最后简要讨论了存在问题与发展动向.
任务调度问题是空间众包的核心问题之一.现有工作主要针对欧式空间中的个人任务,忽略了群组任务以及底层的路网信息,实用性有待提高.有鉴于此,本文研究路网场景下群组任务匹配和调度问题,提出了基于网格索引的群组任务匹配和调度算法框架.该框架由网格索引、搜索有效工人集算法和组建团队算法组成.该框架首先通过网格索引存储的路网信息和工人信息快速过滤掉不满足时间或预算约束的工人,避免大量无效的最短路径计算.然后利用基于剪枝策略的搜索算法搜索到满足任务约束的有效工人集.最后通过组建团队算法迭代地在有效工人集中选择最小成本覆
区域覆盖算法广泛用于群机器人解决资源勘查、目标搜救、地形测绘等问题.目前,对区域覆盖算法的研究主要是用传统计算机仿真和数值计算方法对算法模型进行测试,然而,软件系统缺陷可能会使测试结果出现偏差,导致任务失败.因此,本文采用定理证明的形式化方法,基于交互定理证明器HOL-Light中集合库、实分析库等定理证明库,实现了群机器人工作场景的高阶逻辑表达;完成了机器人移动概率和平均移动概率的建模与验证;最终验证了一定时间步长内群机器人在特定区域内的覆盖率的正确性.为实现多种复杂场景下群机器人区域覆盖算法的高阶逻辑
基于深度强化学习(Reinforcement Learning,RL)的知识推理旨在推理缺失事实并补全知识图谱,RL智能体在知识图谱上搜索路径,并基于路径进行事实预测和链接预测.由于具有良好的性能和可解释性,基于深度RL的知识推理方法近几年迅速成为研究热点.然而,对于特定实体来说,动作空间中存在大量的无效动作,RL智能体常常会因选择无效动作而终止游走,所以路径挖掘的成功率很低.为了解决无效动作的问题,本文提出一种基于深度迁移强化学习的知识推理方法—TransPath,在目标任务之外增加了单步游走选择有效动
本文阐述了一种应用于大规模数据节点划分的改进网格密度峰值聚类算法.针对传统的密度峰值聚类算法距离矩阵计算时间长,人工选取阈值对聚类结果的影响较大,限制其在大规模数据集中的应用等缺点,本文采用基于自适应网格划分的密度峰值聚类,通过判断网格均衡来计算网格间距离,引入万有引力得到网格相对引力,通过极大值平均选取法自动得到密度与引力阈值.经过不同数据集的对比实验,本文提出的大规模节点划分算法在保证算法准确度的同时,其执行速度最高约提升了77%,由轮廓系数评估的聚类质量稳定在0.42左右.
针对现有5G系统主同步信号同步算法在大频偏情况下的同步性能较差的问题,本文提出一种基于快速傅里叶变换(Fast Fourier Transform,FFT)的联合检测算法,通过对传统互相关算法中的共轭相乘结果进行FFT变换,记录变换后的峰值,遍历所有峰值找到同步点,得出小区组内号,再进行载波频偏的估计.仿真结果及复杂度分析表明,改进算法不仅具有很强的抗频偏能力,尤其对于大频偏下的情况,同时完成载波频偏的估计,所增加复杂度在可接受范围内且检测性能稳定.