论文部分内容阅读
目前工程控制中大部分系统采用传统PID控制,由于分数阶PID继承了传统PID的优点,并且具有更好的控制品质及更强的鲁棒性,因此针对分数阶微积分的高精度数字实现及分数阶PID控制器在工程复杂系统中的实际应用,提出一种新的分数阶微积分高精度数字实现算法-最优Oustaloup数字实现,并建立控制系统的仿真模型,利用框图式模型结合最优ITAE性能指标来整定分数阶PID的参数。通过实例仿真验证,该方法能进一步优化控制器参数,提高控制精度及获得更好的控制效果,便于非线性系统及复杂系统的分数阶PID参数整定。
At present, most systems in engineering control use traditional PID control. Because fractional PID inherits the advantages of traditional PID and has better control quality and robustness, the high-precision digital realization of fractional calculus and Fractional-order PID controller in engineering complex system, a new fractional calculus high-precision digital implementation algorithm - the optimal Oustaloup digital implementation, and the establishment of the control system simulation model, the use of block diagram model combined with the optimal ITAE performance index to set the parameters of fractional PID. Through the example simulation, this method can further optimize the controller parameters, improve the control accuracy and obtain better control effects, and facilitate the fractional PID parameter tuning of nonlinear systems and complex systems.