【摘 要】
:
针对传统神经网络模型在洪水预测过程中存在准确性低、过拟合等问题,本文以赣江流域外洲水文站每月平均水位为研究对象,提出基于正则化GRU神经网络的洪水预测模型来提高洪水
【基金项目】
:
国家自然科学基金(61866028, 61741312).
论文部分内容阅读
针对传统神经网络模型在洪水预测过程中存在准确性低、过拟合等问题,本文以赣江流域外洲水文站每月平均水位为研究对象,提出基于正则化GRU神经网络的洪水预测模型来提高洪水预报精度.选用relu函数作为整个神经网络的输出层激活函数,将弹性网正则化引入到GRU模型中,对网络中输入权重w实施正则化处理,以提升GRU模型的泛化性能,并将该模型应用于外洲水文站每月平均水位的拟合及预测.实验对比表明,弹性网正则化优化后的模型预测拟合程度较高,合格率提高了9.3%,计算出的均方根误差较小.
其他文献
多租户作为云计算的核心计算,它解决了在相同的系统资源或软件应用中实现多用户共同访问和使用,提高了系统软硬件资源的利用率,如何保障租户服务质量的前提下提高服务器资源
0-1背包问题是一个经典的NP完全问题,该问题在实际生活中具有广泛的应用.针对现有算法在求解0-1背包问题时精度不高的缺点,提出了一种诱导因子猴群算法.所给诱导因子猴群算法
直播系统中用户聊天内容的实时拦截具有非常重大的意义,为了提高分类的准确率和效率,提出了一种基于Doc2Vec与SVM结合的文本分类模型对聊天内容分类,判断聊天内容是否应该被
腹腔主动脉所处环境复杂,不可避免的造成弱边缘和边缘不均匀等问题.提出一种基于局部边缘特征的水平集演化算法,根据其所处水平集内部与外部相邻区域的相关性赋值加权因子,使得能量函数最小化.实验结果表明,本算法在实验精度和稳定性方面取得了良好的效果.
在互联网码号资源公钥证书体系(Resource Public Key Infrastructure,RPKI)中,依赖方(Relying Party,RP)负责从资料库同步并验证资源证书和签名对象(ROAs,Manifests,Ghostbusters),
临床决策支持系统中,通常使用电子病历中的病人描述作为查询检索,进而辅助医生做决策分析.我们提出了一个基于注意力机制的网络扩展查询方法以提高检索效果.由于医学文本注释