论文部分内容阅读
借鉴人工免疫系统的记忆、动态识别等功能,提出一种约束动态免疫算法(CDIOA),并用于高维约束动态背包问题的求解。通过随机约束选择策略选择可行及非可行抗体,非可行抗体参与群体的进化;利用抗体修正策略确保进化群中有一定比例可行抗体,提高算法搜索功能;设计环境识别模块判断环境变化与否,建立环境记忆池保存较优秀记忆细胞,记忆细胞参与相似(相同)环境初始群的产生,加速算法在相似环境搜索速度。建立三种不同环境的动态背包问题作为标准测试实例,将CDIOA与已有的四种动态优化算法进行测试比较,结果表明:CDIOA