论文部分内容阅读
针对目前融合显隐式反馈的推荐算法发展仍存在显式反馈数据利用不合理、隐式反馈缺乏负反馈样本等问题,本研究基于融合显隐式反馈的SVD++算法和针对正负反馈的PSVD算法的核心思想,根据全反馈思想进行正负反馈层面上的尝试,利用基准预测思想在显隐式反馈中建立正负反馈的区分标准,优化显式反馈对于获取正负样本的评价公式,建立隐式反馈区分用户偏好的计算标准,重新构建用户与推荐对象之间的评分预测模型,提出一种新的融合显式反馈和隐式反馈的协同推荐算法PNF_SVD++。实验结果表明,PNF_SVD++算法在验证评分预测准确性的指标上数据表现较好,其可行性和有效性得到充分验证,同时为融合显隐式反馈的协同过滤推荐算法提供了新的研究思路。