【摘 要】
:
气化脱磷能够有效地去除熔渣中部分P2O5,扩大其磷容量.在实验室进行了焦炭还原转炉渣气化脱磷热态试验,热力学计算研究结果表明,在1540℃下焦炭会优先还原P2 O5,还原产物为可能的P2,而P2 O5的实际还原率与理论计算值基本一致.通过SEM-EDS对还原前后炉渣形貌进行分析,转炉终渣主要由C2 S相、RO相、钙铁橄榄石和钙镁橄榄石构成,并且P存在于高Ca和高Si含量的硅酸盐相微区,可推断C2 S相是P的富集相;经气化脱磷后,转炉熔渣中的FeO被焦炭还原成亮白色大直径颗粒状单质Fe相,此相会吸附逸出的P
【机 构】
:
华北理工大学冶金与能源学院,河北唐山063210;唐山市特种冶金及材料制备重点实验室,河北唐山063210
论文部分内容阅读
气化脱磷能够有效地去除熔渣中部分P2O5,扩大其磷容量.在实验室进行了焦炭还原转炉渣气化脱磷热态试验,热力学计算研究结果表明,在1540℃下焦炭会优先还原P2 O5,还原产物为可能的P2,而P2 O5的实际还原率与理论计算值基本一致.通过SEM-EDS对还原前后炉渣形貌进行分析,转炉终渣主要由C2 S相、RO相、钙铁橄榄石和钙镁橄榄石构成,并且P存在于高Ca和高Si含量的硅酸盐相微区,可推断C2 S相是P的富集相;经气化脱磷后,转炉熔渣中的FeO被焦炭还原成亮白色大直径颗粒状单质Fe相,此相会吸附逸出的P2,随着Fe含量的增加,赋存P元素也会增多.因此可推断在气化脱磷时,一部分P以P2的形式通过炉气排出炉外,另有部分P2会被Fe相吸附,并赋存在单质Fe相中形成磷化铁化合物.
其他文献
针对马鞍山钢铁股份有限公司某厂120 t转炉炉型特点和冶炼工艺情况,对原有氧枪4孔喷头参数进行了优化设计.对氧枪喷孔数、喷孔偏转角、工况压力、喉口直径、出口直径和扩张段长度等都进行了适当调整,优化后的氧枪喷头马赫数由1.98提高到2.05.结合该厂生产实践表明,优化后的氧枪5孔喷头可增加转炉供氧强度,优化转炉内动力学反应条件,吹氧时间平均缩短128 s,脱磷率提高4.65%,终渣w(TFe)由18.59% 降低到15.84%,铁水消耗降低22 kg/t,不仅有利于转炉提高废钢比,还可以提高金属收得率.
转炉脱磷工艺利用了转炉容积大的特点,可以实现转炉前期快速高效低碱度脱磷.脱碳渣的循环利用降低了石灰等辅料消耗和渣量.在低温低碱度转炉脱磷的条件下,低温在热力学上有利于脱磷,但温度过低会使渣过于粘稠而影响动力学条件并使倒渣困难;适当提高碱度,脱磷效果较好.随着渣中氧化铁含量的上升,脱磷效果先上升后下降.转炉脱磷渣中固液两相共存,其中的富磷相固溶体具有很好的富磷作用.双联法由于脱磷后渣钢完全分离,能有效提高脱磷率,适合生产超低磷钢;但由于该工艺需要两个转炉,转炉利用效率低,同时中间出钢热损失大.双渣法转炉脱磷
溅渣是提高转炉炉龄最有效的技术,但由于钒渣与钢渣成分差异较大,溅渣护炉技术尚未在提钒转炉上得到应用.为解决提钒转炉炉衬侵蚀严重的问题,对改性钒渣溅渣进行了研究.结果表明,通过改性可以达到调整钒渣状态的目的.改性后的钒渣具有良好的溅渣性能,溅渣后炉厚增加10 mm以上.改性钒渣中w(CaO)可控制在3% 以下,对钒渣和半钢的质量影响不明显,渣中TFe含量大大降低,有利于降低提钒过程中的铁损.
为了研究转炉底吹氧气和石灰粉的冶炼工艺,进行了冷态和热态模拟试验.冷态模拟试验通过改变气源压力的方法,基本实现了对石灰粉流量的控制.喷粉罐的中路气流和下路气流发挥了主要作用.在内径6mm的输粉管和喷粉枪内径5mm的条件下实现了5min之内喷吹石灰粉6~9kg的目标.平均粉气比为11.2~23.3 kg/m3,输粉气平均流速达到34.4~113.0 m/s.热模拟试验发现仅靠底吹石灰粉及11.44% ~27.22% 氧量,就可以实现15.8% ~50% 的脱磷率.通过减少底吹枪环缝宽度及增大冷却气甲烷流量等