论文部分内容阅读
采用MIRONENKO的反射函数法研究了双摆振动系统x′=A(t)x与y′=B(t)y的同相振动性,其中A(t)=(aij(t))2×2,B(t)=(bij(t))2×2.假设F(t),G(t)分别为x′=A(t)x,y′=B(t)y的反射矩阵,当A(t+2ω)=A(t),B(t+2ω)=B(t)时,矩阵F(-ω),G(-ω)分别相似于x′=A(t)x,y′=B(t)y的根本矩阵.若特征方程|λE-F(-ω)|=0与|μE-G(-ω)|=0具有相同的特征根,则x′=A(t)x与y′=B