论文部分内容阅读
创造力一般是指产生新的想法,发现和制造新的事物的能力。创造力是人的一种高级能力,创造性活动是人类最重要的实践活动。是社会发展的原动力。美国教育学家罗恩菲尔德指出:“人与动物的主要区别之一,就是人类能够创造而动物不能。创造是人类所具有的本能”。江泽民主席指出“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力”。原教育部长周济也多次谈到“实施素质教育的重点是要改变教育观念,改变传统的教育手段,尤其要以培养学生的创新意识和创新精神为主”。因而在现代数学教学中,如何在课堂教学中培养学生创造意识,激发学生的创造动机,发展学生的创造思维,树立学生创造的个性品质,是摆在每一个数学教师面前的一个重要课题,值得很好的研究。那么,如何培养学生数学创新能力呢?
1.指导观察。观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。
例如教学圆的认识时,我把一根细线的两端各系一个小球,然后,甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”,“小球始终绕着中心旋转而不跑到别的地方去”,“我还看见好像有无数条线”……从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离等于定长的点得轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。
2.引导想象。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执著追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
3.鼓励求异。求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。
4.诱发灵感。灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破。
例如:有这样的一道题:把3/7、6/13、4/9、12/25用“>”号排列起来。对于这道题,学生通常都是常都是采用先通分比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄得题目《7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
(作者单位:辽宁盘山县古城子学校)
(责任编校:扬子)
1.指导观察。观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。
例如教学圆的认识时,我把一根细线的两端各系一个小球,然后,甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”,“小球始终绕着中心旋转而不跑到别的地方去”,“我还看见好像有无数条线”……从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离等于定长的点得轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。
2.引导想象。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执著追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
3.鼓励求异。求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。
4.诱发灵感。灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破。
例如:有这样的一道题:把3/7、6/13、4/9、12/25用“>”号排列起来。对于这道题,学生通常都是常都是采用先通分比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄得题目《7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
(作者单位:辽宁盘山县古城子学校)
(责任编校:扬子)