论文部分内容阅读
匹配是实现图像分类的关键问题,由于匹配问题的复杂性,目前还没有一个较好的解决办法。该文提出了一种基于Fourier变换和信息熵相结合的匹配算法,对Logo的分类问题进行了研究。通过Fourier变换在图像的频域中找到最佳匹配,使用相关度阈值与信息熵差比作为衡量标准。实验中选取了大量商品图像对Logo匹配问题中查准率和查全率进行了统计分析。实验结果表明,当选取适当相关度阈值与信息熵差比的情况下,该算法能有效提高商品图像按Logo的分类效果。