论文部分内容阅读
有这样一个有趣的问题 :下面的多项式各不相同 ,但都有类似的分解形式( 1 )x3+ 4x2 + 8x+ 8=(x2 + 2x+ 4 ) (x+ 2 )( 2 )x4+ 4x3+ 1 2x2 + 1 6x+ 1 6=(x2 + 2x+ 4 ) (x2 + 2x+ 4 )( 3)x5+ 4x4+ 1 2x3+ 2 4x2 + 32x+ 32 =(x3+ 2x2 + 4x + 8) (x2 + 2x + 4 )( 4 )x3+ 6x2 + 1 8x+
There is an interesting problem: the following polynomials are different, but all have similar decomposition forms. (1) x3+ 4x2 + 8x+ 8=(x2 + 2x+ 4 ) (x+ 2 )( 2 )x4+ 4x3+ 1 2x2 + 1 6x+ 1 6=(x2 + 2x+ 4 ) (x2 + 2x+ 4 )( 3)x5+ 4x4+ 1 2x3+ 2 4x2 + 32x+ 32 =(x3+ 2x2 + 4x + 8) (x2 + 2x + 4 )(4 )x3+ 6x2 + 1 8x+