SL(n+1;R)=S(GL(1;R)£GL(n;R))上线丛的一个超几何方程

来源 :数学杂志 | 被引量 : 0次 | 上传用户:BBQChris
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了伪黎曼对称空间SL(n+1;R)=S(GL(1;R)£GL(n;R))线丛上的微分方程.利用李代数方法,即Casimir算子得到这个微分算子.这个微分算子是一个超几何方程,这个结论推广了文献[1,3,5]中的微分方程.
其他文献
设E是R中一可测子集,H为Hilbert变换.本文研究了H(?E)的Lp积分及其分布函数的相关性质.利用初等但精细的分析,给出了上述积分和分布函数的具体表达式.本文所采用的方法给出了
本文利用Krasnoselskii不动点定理考虑了一类非齐次迭代泛函微分方程x'(t)=c_1x(t)+c_2x~([2])(t)+F(t)周期解的存在唯一性问题,推广了迭代泛函微分方程周期解的相关理论.
通过对火焰切割机测量轮旋转接头进行改造,解决了旋转接头漏水问题,改善了测量轮的工作环境,提高了板坯定尺的精度,实施后取得良好的效果。
主要研究了特征p〉 2的代数闭域上无限维Cartan型模李超代数W和S的阶化模.利用伸张及混合积实现的方法,确定了无限维模李超代数W和S的阶化模.进而,讨论了这两类模李超代数阶
本文研究了两个弱Orlicz-Hardy鞅空间中元素之间相互转换关系的问题.利用鞅变换的方法,证明了:设Φ1是凹Young函数,Φ2是凹或者凸Young函数,且q(Φ1)〉0,