论文部分内容阅读
聚类集成通过对原始数据集的多个聚类结果进行学习和集成,得到一个能较好地反映数据集内在结构的数据划分。聚类集成能够较好地检测和处理孤立点,提高聚类结果质量。综述了聚类集成的相关知识,介绍了聚类集成的相关概念和优点;根据使用的聚类算法介绍了3种产生聚类成员方法,分析了各自的优缺点及适用条件;介绍了目前已有的一致性函数,阐述了其基本原理,并指出了其局限;最后讨论了未来的研究方向。