论文部分内容阅读
以转子动力学和非线性动力学理论为基础 ,针对非线性弹性转子—轴承系统的具体特点 ,用打靶法对采用短轴承模型的弹性转子—轴承系统的周期解进行了求解 ,并用数值积分和庞加莱映射方法对其动力学特性随某一参数变化时稳定性的改变进行了分析 ,计算结果表明 ,系统具有发生倍周期分叉及概周期运动的可能。用数值方法得到系统在某些参数域中的分叉图 ,直观显示了系统在某些参数域中的运行状态。
Based on the theory of rotor dynamics and nonlinear dynamics, aiming at the characteristics of the nonlinear elastic rotor-bearing system, the periodic solution of the elastic rotor-bearing system with short bearing model is solved by shooting method, and the numerical solution Poincaré mapping method is used to analyze the change of its dynamic characteristics with the change of a certain parameter. The calculation results show that the system has the possibility of bifurcation and almost periodic motion. The bifurcation diagram of the system in some parameter domains is obtained numerically and the operation status of the system in some parameter domains is visually displayed.