论文部分内容阅读
序列模式挖掘是数据挖掘的一个重要问题.传统的序列模式仅能揭示频繁出现的项目以及出现的顺序,但不能揭示在前续项目出现的情况下,后续项目出现的时间.在本文中,引入一种新的多时间粒度序列模式,模式中相邻项目之间的转换时间采用从原数据集中导出的、多时间粒度下的最小有界时间区间和平均时间标注.建立了多时间粒度序列模式挖掘模型,提出了一种新的多时间序列模式挖掘算法MG-PrefixSpan.实验表明,算法是有效的.