论文部分内容阅读
针对传统对传神经网络(Counter propagation networks,即CPN)要求输入向量必须均匀分布以及隐含层神经元个数难以确定,其应用受到很大局限等问题,对CPN算法进行改进并运用于电力负荷预测。研究结果表明:通过改进CPN算法的初始权重设置规则,克服了对输入向量限制过于严格的不足;通过优化算法运行步骤,提高了算法的运行效果;改进后的CPN算法比BP算法所得预测结果误差小,比日前电力负荷预测研究中RBF和Elman神经网络所得预测结果误差也小;与BP算法相比,CPN改进算法的预测精度提高4